
How to Squeeze a Crowd:
Reducing Bandwidth in Mixing

Cryptocurrencies
Alishah Chator Matthew Green

Johns Hopkins University
{alishahc,mgreen}@cs.jhu.edu

Abstract—Several popular cryptocurrencies incorporate
privacy features that “mix” real transactions with cover
traffic in order to obfuscate the public transaction graph.
The underlying protocols, which include CryptoNote and
Monero’s RingCT, work by first identifying a real transac-
tion output (TXO), sampling a number of cover outputs,
and transmitting the entire resulting set to verifiers, along
with a zero knowledge (or WI) proof that hides the identity
of the real transaction. Unfortunately, many of these
schemes suffer from a practical limitation: the description
of the combined input set grows linearly with size of the
anonymity set.

In this work we propose a simple technique for efficiently
sampling cover traffic from a finite (and public) set of
known values, while deriving a compact description of the
resulting transaction set. This technique, which is based on
programmable hash functions, allows us to dramatically
reduce transaction bandwidth when large cover sets are
used. We refer to our construction as a recoverable sampling
scheme, and note that it may be of independent interest
for other privacy applications. We present formal security
definitions; prove our constructions secure; and show
how these constructions can be integrated with various
currencies and different cover sampling distributions.

Index Terms—Privacy, Anonymity, Mixing, Ring Signa-
tures.

I. INTRODUCTION

Cryptocurrencies such as Bitcoin suffer from well-
known privacy limitations. These stem from the fact
that each transaction on the currency’s public ledger is
explicitly linked to one or more preceding transaction
outputs from which funds originate. A number of aca-
demic works [1], [2], [3], [4], [5] and for-profit compa-
nies [6], [7] have demonstrated that sensitive payment
information can be extracted from the resulting public
transaction graph.

Several recent currencies address this problem by
directly incorporating cryptographic mixing into the
consensus protocol. The underlying protocols, which

include Zerocash [8], CryptoNote [9], Zerocoin [10] and
RingCT [11] obscure the identity of the previous trans-
action output(s) being consumed—henceforth referred to
in this paper as the real outputs—by hiding them within
a larger set of cover outputs, which are other transactions
on the ledger that are not being spent in this transaction.
This practice hides the origin of funds by hiding the real
outputs within a larger anonymity set [12]. In practice
this technique is frequently realized using non-interactive
witness-indistinguishable (WI)1 or zero knowledge (ZK)
proofs, such as zkSNARKs [14]. Regardless of the exact
technology employed for the proof system, transactions
in these systems can be viewed as making the following
statement:

This transaction references M “real” previ-
ous transaction outputs (I1, . . . IM) embedded
within a public “transaction output list” T of
previous outputs drawn from the ledger.

While the protocols above use different techniques,
for the purposes of this paper we will consider only two
aspects: (1) the size of the list T for each transaction
(which we denote by |T |), and (2) the size of the
resulting transaction as a function of |T |. The former
directly affects the privacy provided by the protocol:
larger values of |T | may permit a larger anonymity set
for each transaction. At the same time, limited space on
the ledger can make larger transactions unworkable.

Protocols such as Zerocash and Zerocoin [8], [10]
set T to be the set of of all previous outputs, using
cryptographic accumulators and succinct proofs. This
maximizes |T | and minimizes transaction size, though
at the cost of using strong cryptographic assumptions.
By contrast, “mixing” protocols such as CryptoNote and

1These WI proofs are often used as part of a larger primitive, such
as a ring signature [13].

RingCT (used by Monero [15]) use a smaller cover set.
In these protocols, the spender randomly samples a cover
set for each transaction and transmits the description of
T as part of the transaction data. The need to encode
a new subset T within each transaction creates tension
between the size of the anonymity set and the transaction
size.

In this work, we focus exclusively on currencies that
follow the mixing approach. Specifically, we address the
following problem: using current approaches, the trans-
action bandwidth needed to describe T grows as O(|T |).
While this is acceptable for small cover sets, it makes
these protocols unworkable with larger amounts of cover
traffic.2 This is problematic, given that there is impetus
within the development community to greatly increase
the amount of cover traffic used in currencies such as
Monero — to values as large as |T | = 100, 000 [16]
— by incorporating asymptotically more efficient proof
systems where the proof size is constant or logarithmic
in |T | [17], [18], [19]. As this work is deployed, the
description of T will increasingly dominate as the source
of transaction bandwidth, and may become the effective
limit on the size of the anonymity set.

Our contribution. In this work we describe an alter-
native approach to sampling the transaction output list
T such that the resulting description of T is compact.
Our approach is relatively simple, although the details
and security proofs require considerable attention. Rather
than sampling T using the current approach, we propose
to sample and encode this set using a programmable
keyed hash function (see e.g., [20], [21]) with a relatively
short key K. We show that using this approach, the de-
scription of T can be structured so that it grows with the
number of real transaction outputs (M), rather than with
the number of total elements in the list (N). For large
cover sets, our approach should represent a significant
improvement in space efficiency over the naı̈ve approach
currently used by real currency systems [22], [15].

Of course, this approach cannot be achieved using any
hash function. In this work we show how to construct
such a function, as part of a protocol that we call
a recoverable sampling scheme. We provide security
definitions and security proofs for our constructions in
the random oracle model.

We discuss our approach in two settings. First, we
consider an approach that samples the cover traffic

2In practice this set is generally encoded using |T | differentially-
encoded transaction indices. Accumulator-based currencies work
around this issue, since the set T can be represented by a single value
indicating the current transaction’s position in the ledger.

uniformly from the set of all previous transaction outputs,
which closely matches the approach used by CryptoNote
(as implemented in the ByteCoin currency) [9], [22].
We then move to a more complex (and realistic) setting
where T is sampled according to a specific and non-
uniform distribution. Finally, we discuss concrete scheme
parameters and give bandwidth cost estimates for inte-
grating our approach into various deployed currencies,
including ByteCoin [22] and Monero [15]. As a final
matter, we describe applications of our technique to other
application areas, including anonymous communications
and Client-Server Puzzles [26].

A. Intuition

At a high level, our approach is straightforward: rather
than sampling and transmitting the full set T with each
transaction, we define a specialized hash function HK(·)
with some useful properties. To construct a transaction
and transaction list T , the spender first constructs and
transmits a key K within the transaction, along with an
integer N . The nature of the function is such that, given
this key, any party can now efficiently compute T as
(HK(0), HK(1), . . . ,HK(N − 1)).

The challenge is to construct the function H such
that the resulting set T will embed up to M “real”
transactions chosen by the spender, without revealing
which transactions are the real ones, and which are cover
traffic.3 To do this, we must solve several problems. First,
we require a function H with a compact key K that
can be programmed to incorporate the real transactions
at random points. Second, we must ensure that the
remaining “cover” transactions are all sampled from the
appropriate distribution (which may not be uniform).
Finally, we need to prove that this technique is as secure
as the naı̈ve sampling approach; i.e., that it does not leak
new information to an attacker who wishes to identify
the real transactions.

As a warm up, we begin by describing a simple
technique for sampling the cover set uniformly from
the list of all transaction outputs on a ledger consisting
of ` such outputs. For purposes of exposition, we will
consider the simple case where there is only one real
transaction (M = 1), and we will assume that all parties
know the list of previous transactions.

As an ingredient we require an underlying keyed hash
function f : {0, 1}κ × ZN → Z`, which we model as a

3In practice, this guarantee depends largely on the distribution of the
real transactions. We define an approach that guarantees our technique
is “no worse” than the naı̈ve sampling approach.

2

random oracle.4 We now define a simple programmable
hash function H : {0, 1}κ × Z` × ZN → Z` as follows:

Hk,C(i) = fk(i) + C mod `

Notice that a spender, who wishes to embed some real
transaction index I ∈ [0, `) in T , can easily program
this function as follows: sample a random k ∈ {0, 1}κ
and a random index j ∈ [0, N). Now compute a value C
such that C ≡ I − fk(j) mod `. This implicitly defines
Hk(j) ≡ I mod ` and sets each remaining H(i), i 6= j
to be uniform in Z`.

Of course, this simple scheme works only for cases
where there is a single real transaction. In practice, real
protocols may require the spender to embed several
real transactions into T . In our main construction, we
generalize the above construction by replacing the single
value C with a polynomial P (·) evaluated over a field
Fp for some large prime p. This approach allows us
to ensure that for any subset of M distinct indices j,
fk(j) +P (j) ≡ Ij mod `. It remains only to prove that
the resulting scheme is “as secure” as the naı̈ve sampling
approach. We provide a security definition for this claim,
and offer a proof in the random oracle model.

Of course, this proposal is not complete. Given a
solution such as the one above, we must still adapt the
details so that they work within a real cryptocurrency.
In later sections of the paper we discuss altering the
function H so that the cover traffic is sampled from
a more realistic distribution. Additionally, we address
the problem that our approach may produce duplicate
transaction outputs within the transaction list T , and
discuss how to remove these. We provide a detailed
discussion of these aspects of the problem in §V.

B. Outline of this work

The remainder of this work proceeds as follows. In
the next two sections we provide definitions for our
schemes. In §IV we provide a construction that assumes
a uniform sampling distribution for cover transactions.
In §V we discuss sampling for alternative distributions.
In §VI we show how our constructions can be integrated
with specific cryptocurrency mixing protocols, and give
concrete estimates of transaction size. In §VII we de-
scribe some different potential applications for these
techniques outside of cryptocurrency privacy. Finally,
§VIII discusses related work.

4Such functions can easily be constructed from any standard cryp-
tographic hash function.

II. PRELIMINARIES

a) Notation: We will define ν(·) to be a negligible
function. Let A

c
≈ B indicate that the distributions A,B

are computationally indistinguishable. We will use D to
refer to a specific distribution for sampling transaction
outputs.

b) Transaction sets: While thus far we have re-
ferred to transaction sets, in our main constructions we
will relax the requirement that each element is unique,
and we will add an implicit ordering. Henceforth we will
consider T to be an ordered multiset, or merely a list of
transactions.

c) Transaction ledger: We assume the existence of
an append-only public ledger of transaction outputs L =
(T0, T1, . . . , T`−1) that is available to all parties in the
system. New transaction outputs are appended to L after
they have been verified by the network. By L` we denote
the first ` transactions on L.

We will assume that each transaction output Ti ∈ L`
can be referenced uniquely by its index I ∈ {0, . . . , `−
1}; henceforth we will use these indices exclusively to
represent transaction outputs on the ledger.

d) Keyed hash functions with integer domain and
range: Let m,n be positive integers. We define fm,n :
{0, 1}κ × Zm → Zn as a keyed function that, on input
a key k ∈ {0, 1}κ and an integer a ∈ {0, . . . ,m − 1},
outputs an integer b ∈ {0, . . . , n − 1}. We will assume
that each pair (m,n) uniquely defines the function
family, and that these functions can be re-constructed
efficiently by any party.5 In our security proofs we will
model this function as a random oracle.

III. DEFINITIONS

The purpose of this work is to define an approach
to sampling the transaction list that produces a compact
description. We now define this scheme.

Definition 3.1: A recoverable sampling scheme
(RSS) is parameterized by a sampling distribution D.
It consists of two possibly probabilistic algorithms
(Sample,Recover) with the following definition:

SampleD(1λ, `, I, N) → (T ,W). On input a security
parameter λ, a ledger size `, a set of M legitimate
transaction indices I = {I0, . . . , IM−1} ∈ ZM` ,
and a desired number of total transactions N > M ,
this algorithm outputs a tuple (ordered multiset) T
containing N (possibly non-unique) elements, and
a compact description W.

5Note that functions of this form can be constructed efficiently from
any standard underlying hash function using a variety of techniques.

3

RecoverD(W, `)→ T . On input a compact description
W and the ledger size `, outputs the transaction
multiset T or the distinguished failure symbol ⊥.

An RSS must satisfy three properties, which we refer
to as correctness, compactness, and security. We define
these below.

Correctness. Let (T ,W) ← SampleD(1λ, `, I, N). For
an RSS to be correct, several requirements must be
met for all valid (λ, `, I, N). First, it must hold that T
contains N elements and I ⊂ T . Finally, the following
equality must be satisfied:

RecoverD(W, `) = T

Compactness. For an RSS to be useful, it must hold that
given a fixed M the size of the compact description W
should grow sublinearly as N increases. We note that
the compactness requirement rules out a class of trivial
schemes, including any scheme that simply outputs W =
T .

Security. Intuitively, security for a recoverable sampling
scheme requires that the scheme reveals “no more”
information to an attacker than would be revealed by an
ideal implementation that simply samples N −M cover
transactions and combines these with I in a random
ordering. To define this form of security, we must first
describe two experiments.

Real experiment. Let (A, λ, `, I, N,D) be the input to
the experiment. Compute (T ,W) ← SampleD(1λ,
`, I, N) and run A(`, |I|, N,W). The output of
the experiment is A’s output.

Ideal experiment. Let (B, λ, `, I, N,D) be the input
to the experiment. Construct a multiset C consisting
of N − |I| (possibly duplicate) transaction indices
(sampled according to D) from the set Z`; and shuf-
fle these values randomly with the values in I to
obtain the ordered list T . Next run B(`, |I|, N, T).
The output of the experiment is B’s output.

We are now prepared to define security for an RSS.
Definition 3.2 (Security for RSS): An RSS Π =

(Sample,Recover) is secure if for every p.p.t. adversary
A, sufficiently large λ, and all valid (`, I, N,D), there
exists a p.p.t. B such that the following holds:

Real(A, λ, `, I, N,D)
c
≈ Ideal(B, λ, `, I, N,D)

Discussion. We note that this is a purely comparative
definition. That is, our definition does not imply that

the “ideal” sampling scheme is itself secure for any
distribution or set of input transactions. Indeed, for
many values of I the real transactions may be easily
distinguishable from the cover transactions! Addressing
that problem is not the purpose of this work: instead,
our goal merely to show that the RSS scheme performs
“no worse” than the ideal approach, while offering an
improvement in bandwidth efficiency.

As an additional note, our ideal experiment imple-
ments sampling with replacement, resulting in the po-
tential for duplicates in the transaction list T . This
is slightly different than some implemented schemes
that remove duplicates. We make this relaxation order
to simplify the presentation of the rest of this paper,
although in later sections we address the problem of
removing duplicates from this set. Finally, to simplify
our definitions, we do not explicitly include auxiliary
inputs to the parties. This must be done for sequential
composition of the primitive. Our constructions achieve
this notion as well.

IV. A UNIFORM SAMPLING TECHNIQUE

We begin by describing a technique for sampling the
cover set uniformly from the set of all transactions on a
ledger L`. This technique mirrors the approach of certain
protocols such as CryptoNote [9] as implemented in
the ByteCoin currency [22]. The algorithms we describe
below allow us to embed M real input transactions into
a transaction multiset T of size N , where 0 < M < N .
We will assume that both spender and verifier have
access to the ledger L`.

The sampling algorithm. Let L` be the ledger. Let
I0, ...IM−1 ∈ Z` represent the indices (into L) of the
legitimate input transactions. Let N represent the desired
size of T and M > 1 represent the number of legitimate
input transactions (where M < N). We will make use
of a field Fp of prime order p � ` (such that 1

p/` is
negligible). To sample this set, the spender performs the
steps in Figure 1.

The recovery algorithm. The above algorithm produces
a set T that can be used to construct the transaction.
However, the full description of T need not be included
in the transaction. Instead, the spender may include the
tuple W = (k, P, `,N). This can be used by the verifier
to recover T as described in Figure 1.

Efficiency. Our scheme requires sampling a random key,
which can be done with marginal computational effort.
In practice we can use an efficient algorithm such as
AES to perform the function of f . Constructing the poly-
nomial also requires minor computational effort. Using

4

SampleU (1λ, `, I = {I0, . . . , IM−1}, N)

1 : Choose a prime p such that 1/(p/`) ≤ ν(λ).

2 : Construct the keyed hash function f : {0, 1}κ × ZN → Zp.
3 : Sample a random key k ∈ {0, 1}λ.
4 : Sample random {j0, ..., jM−1} ⊂ {0, . . . , N − 1}.
5 : For i = 0 to M − 1 : Choose yi such that fk(i)− yi ≡ Ii mod `.

6 : Compute a0, ..., aM−1 that define an order-(M − 1) polynomial P (·) over Fp s.t. ∀i ∈ [0,M), P (ji) = yji .
7 : For i = 0 to N − 1 : compute Ti = fk(i)− P (i) mod `.

8 : return T = {T0, . . . , TN−1} and W = (p, k, P, `,N).

RecoverU (W, `)

1 : Construct the keyed hash function f : {0, 1}κ × ZN → Zp.
2 : For i = 0 to N − 1 : compute Ti = fk(i)− P (i) mod `.

3 : return T = {T0, . . . , TN−1}.

Fig. 1. The RSS uniform sampling and recovery algorithms

Lagrange polynomials it requires about (n+ 1)(2n+ 1)
multiplications in Fp to compute the encoding.

Correctness and compactness. Assuming a fixed M ,
the size of the compact description W clearly grows at
most logarithmically as N increases.6 It is easy to see
that the algorithms above are correct, in the sense that
I0, ..., IK−1 is contained within T . Specifically, there
exists {j0, ..., jK−1} ⊂ {0, . . . , N − 1} such that for
each ji:

Tji ≡ fN,`(j)− P (ji) mod `.

≡ fN,`(k, j)− yi mod `

≡ fN,`(k, j)− fN,`(k, j) + Ii mod `

≡ Ii mod `.

A. Security

We now prove that the above scheme is a secure RSS
in the sense of Definition 3.2.

Theorem 4.1: The protocol Π = (Sample,Recover)
described above is a secure RSS if the function f :
{0, 1}κ × ZN → Zp is modeled as a random oracle.
Proof. To succeed in our proof, we must show
that for every p.p.t. A there exists a p.p.t. ad-
versary B such that for all p.p.t. distinguishers Z
we have that |Pr [Z(Real(A, λ, `, I, N,U)) = 1] −
Pr [Z(Ideal(B, λ, `, I, N,U)) = 1]| ≤ ν(λ) over all
valid `, I, N . Let A be the adversary that interacts in the

6And this is only because W contains a representation of N in order
to simplify the description of the algorithm.

Real experiment. Given A we show how to construct B,
which satisfies the above requirement.
B conducts the Ideal experiment, and runs A (and

answers its random oracle queries) as follows. When
B receives (`, |I|, N, T) from the Ideal challenger, it
parses T = (I0, . . . , IN−1) ∈ FNp . It then selects p as
in the real protocol, samples a random key k ∈ {0, 1}κ
and a random set of coefficients (a0, ..., aM−1) ∈ ZMp
that define the polynomial P (·). For i = 0 to N − 1, it
programs the random oracle such that:7

fk(i) ≡ P (i)− Ii mod `

Finally, it sets W = (p, k, P = (a0, ..., aM−1), `,N)
and sends (`, |I|, N,W) to A. When A produces an
output, B uses this as its own output. This completes
the simulation.

To complete the proof, we must show that if f·(·) is
modeled as a random oracle, the simulated distribution
provided to A is computationally indistinguishable from
the Real experiment on the same inputs. This implies
that the distribution of B’s output must in turn be
computationally indistinguishable from that of A in the
Real experiment.

Our proof proceeds via a series of hybrids.
The first hybrid represents the Real experiment,
while the final hybrid is distributed as in the
Ideal experiment. We will define Adv[i] to be

7If the oracle has already been queried by A (and thus implicitly
defined at this point) prior to this stage of B’s operation, B aborts and
outputs ⊥.

5

the quantity |Pr [Z(Hybrid i(A, `, I, N,U)) = 1] −
Pr [Z(Real(A, `, I, N,U)) = 1]|.

Hybrid 0. This hybrid implements the experiment
Real(A, λ, `, I, N,U). Clearly Adv[0] = 0.

Hybrid 1. This hybrid modifies the above hybrid as
follows: for all f(·, ·) oracle queries A makes prior
to receiving W, if the oracle query has the form
(k, ·), then abort the experiment and output ⊥.

We observe that k is random and not in A’s view
prior to receiving W. Thus if A makes q queries, the
probability of abort is at most q · 2−λ. This bounds
Adv[1]− Adv[0] ≤ q · 2−λ.

Hybrid 2. This hybrid modifies the above hybrid
as follows: it randomly samples the coefficients
a0, ..., aM−1 that define P (·) and programs the ran-
dom oracle such that ∀i ∈ [0, N), fk(i) ≡ P (i)−Ii
mod `.

Let us implicitly define I = (I ′0, . . . , I
′
M−1), and

T \ I = (I ′M , . . . , I
′
N−1), and define the corre-

sponding locations of these transactions in T as
(j0, . . . , jN−1). We make the following observa-
tions:

1) The distribution of (a0, ..., aM−1) is identical to
that of the previous hybrid. This is because in
Hybrid 1 it holds that (1) each fk(·) is uniformly
distributed in Fp, and (2) for a given I and
∀i ∈ [0,m) the value P (i) is uniquely deter-
mined by fk(·), thus (3) each pair (fk(i), P (i)) is
equally probable.This implies that the distribution
of these pairs is identical in this hybrid and
the previous hybrid. Because there is exactly
one unique polynomial for each set of M such
points, and the points are uniformly distributed
in FMp , then the coefficients in Hybrid 1 must
also be distributed uniformly in FMp . Thus the
coefficients are distributed identically in the two
hybrids.

2) Similarly, each distinct tuple of coefficients
(a0, ..., aM−1) uniquely defines a distinct tuple
P̂ = (P (j0), . . . , P (jM−1)). Because the co-
efficients are sampled uniformly in this hybrid,
then the tuple P̂ is distributed uniformly in FMp .
Thus ∀i ∈ [0,M) it holds that fk(ji) ≡ P (ji)−
I ′ji mod ` is uniform. This is identical to Hybrid
1.

3) For every index i ∈ (jM , . . . , jN−1) (i.e., the
indices not in I, every index I ′ji in Hybrid 1
is uniformly sampled from Z`. Provided that p
is substantially larger than ` (by a large factor)

then each point fk(ji)is also distributed (nearly)
uniformly and indistinguishably from Hybrid 1.

As a consequence, all values provided to A and all
oracle queries are distributed identically to Hybrid
1. This bounds bounds Adv[2]− Adv[1] ≤ 1

p/` .
By summation over the hybrids we have that Adv[2] −
Adv[0] ≤ q ·2−λ+ 1

p/` , and therefore if 1
p/` is negligible

then B’s success probability is at most negligibly differ-
ent from that of A. 2

V. DUPLICATES AND ALTERNATIVE DISTRIBUTIONS

The scheme we presented above serves as a useful
first step. However, two major problems remain. First,
the transaction list T contains duplicates, which may
reduce the effective size of the anonymity set. Second,
while our above technique works well for uniform dis-
tributions, many desired applications may use alternate
distributions. We discuss both issues below.

A. Duplicates
It is important to note that the scheme above offers

only a probabilistic guarantee for the actual number of
unique transactions in T . There is a chance that duplicate
transactions will occur in this list, resulting in a (unique)
set of size less than N . We discuss several ways to
handle this.

a) Expected number of unique transactions: The
simplest strategy is to accept the existence of duplicate
transactions and instead focus on the expected number
of unique transactions for a transaction list of size N .
We can compute this with the following formula:

`(1− (
`− 1

`
)N)

If we use concrete numbers based on Monero with ` =
4, 000, 000, N = 1, 000, the expected number of unique
transactions is 999.88. Based on this, it seems the risk
of duplicate transactions is fairly low. However, we can
do better if we truly want to minimize this risk.

b) Resampling: To eliminate duplicates entirely,
we can resample T until we obtain N unique trans-
actions. We can bound the number of attempts needed
to minimize the chance of obtaining duplicates to 2−50

with the following formula, where r is the number of
resamples.

r =
−50 log(2)

log(1− `!`−N

(`−N)!)

Using concrete numbers (` = 4, 000, 000, N =
1, 000), then we find after 17 resamples the probability of

6

duplicates is within this bound. This may have a modest
impact on the security reduction.

c) Oversampling: A final strategy is to actually
sample N ′ values so that we obtain N unique trans-
actions with overwhelming probability. We do this by
computing the required value of N ′ such that the prob-
ability of obtaining fewer than N unique transactions is
bounded by 2−50 using the following formula:

N ′ = (N + 1)−
log(250√

2∗π)

(log(1/`))

Using concrete numbers (` = 4, 000, 000, N = 1, 000),
then we find that if we set N ′ = 1, 004 we will obtain
N unique transactions with overwhelming probability.

B. Alternative Distributions

Some currencies, including Monero, use sample cover
transaction outputs according to a non-uniform distribu-
tion. This strategy is designed to produce cover traffic
that more closely resembles the distribution of real trans-
action outputs chosen by users. At a basic level, Monero
achieves this goal by using a distribution that is biased
against older transactions. Nominally this distribution
is referred to as a triangular distribution, however it
has differences from a triangular distribution so that
it has further bias against older transactions. At a low
level, Monero samples random numbers uniformly, and
then transforms them to the appropriate distribution. We
provide a outline of the Monero sampling technique in
Figure 2.

Given this distribution, we will demonstrate how to
apply the technique from Figure 1 to this distribution.
In the sampling method we modify the yi values to be
computed in the following way:

yi = fN,`(k, ji)−
I2i
`2
· 253 mod `

And compute the Ti values as follows:

Ti =

√
fN,`(k, i)− P (i)

253
· ` mod `

Similarly we modify the recover algorithm to compute
Ti as above.

For distributions such as the one above which utilize
uniform sampling in their method, the conversion to
our scheme is fairly straightforward. We simply replace
the uniform sampling step with our programmable hash
function. However, this is a special case and a more
general strategy may be needed. In those situations we
can simply make use of Inverse Transform Sampling.

The general idea is that for a distribution X , with CDF
FX , we simply do the following: If u is the result
of our uniform sampling technique, we solve for x
s.t. FX(x) = u. This implies that using our uniform
sampling technique. we can construct an RSS for any
distribution.

VI. INTEGRATION WITH SPECIFIC
CRYPTOCURRENCY PROTOCOLS

In this section we provide concrete examples of how
this technique can be implemented within specific cryp-
tocurrencies. Here we focus on Monero (RingCT) and
ByteCoin (CryptoNote), due to the fact that these are
currently the most widely-used mixing cryptocurrencies
and protocols. For each system we provide bandwidth
cost estimates for using our approach in that system, and
compare with the cost of the approach currently used by
the system.

Remark: In the following analysis we focus only on
the description of T as it appears within a transac-
tion. The analysis below omits all additional data that
real currencies embed in their transactions, including
(notably) cryptographic proofs. In current versions of
mixing currencies, e.g., Monero, the size of these proofs
grow linearly in N , with Monero requiring an ap-
proximately 13KB transaction for M = 2, N = 10.
Future proof systems [17], [18], [19] offer bandwidth
that grows logarithmically in N or better. For example,
Bulletproofs [19] may offer proof sizes under 3KB.

A. Overview of Protocols

We now describe the cryptocurrency protocols, and
specifically the approach each uses to encode T .

ByteCoin. Bytecoin [22] is one of the earliest mixing
protocols, and is based on the CryptoNote protocol [9].
ByteCoin uses a 1-out-of-N approach for constructing
T . If a transaction references multiple real transaction
outputs, ByteCoin will sample multiple T . Each T is
differentially encoded within the transaction, i.e., for
each i ∈ [1, N) the transaction encodes Ii − Ii−1.8

Because CryptoNote does not hide payment values,
cover traffic outputs are sampled uniformly from the
subset of previous transation outputs that have the same
currency value as the real transaction output being ob-
scured. At the time of writing, the largest such subset (for
outputs of value 100 BCN) gives us ` = 2, 000, 000, and
we use this for our analysis. In our simulations below, we

8These are encoded using a standard VLQ integer encoding. The
low-order 7 bits of each byte encode data, and the MSB acts as a flag
indicating whether there are additional bytes to come.

7

FMONERO(I = {I0, . . . , IM−1}, N)

1 : For i = 0 to N −M + 1 :

2 : Sample a random r ∈ Z253 .

3 : Compute Γi =

√
r

253
· `.

4 : Construct sorted set {T0, . . . , TN−1} of Γ0, . . . ,ΓN−M+1, I0, . . . , IM .

5 : return T = {T0, . . . , TN−1}

Fig. 2. Monero sampling technique

use an estimate for the size of each ByteCoin description
of T by computing the expected size of N uniformly-
sampled indices when differential encoding is applied.
Note that in ByteCoin, values of M > 1 are encoded
using M distinct transaction lists T , one for each real
transaction. For simplicity, we compute our ByteCoin
simulations only for M = 1.9

Monero. The Monero currency [15] is based on the
newer RingCT protocol [11]. Like ByteCoin, Monero
uses a 1-out-of-N approach for constructing T (for
values of M > 1 this results in M distinct lists
T being sampled and encoded within the transaction).
Unlike CryptoNote, RingCT hides transaction values.
Because transaction outputs do not need to be bucketed
by like value, this gives a larger available set of previous
transactions for a spender to use as cover traffic: at the
time of writing, approximately ` = 4, 000, 000. Monero
encodes the transaction indices of T using the same
differential encoding as ByteCoin.

As we discussed in §V, Monero samples cover traffic
using an (approximate) triangular distribution.10 For our
simulations, we estimated the size of a Monero encoding
of T by running Monte Carlo simulations with 1, 000
trials and computing the average size. Monero uses the
same encoding process as ByteCoin for values of M >
1, and so again we consider our results only for the case
of M = 1.

9To evaluate the case where M > 1, one can simply take the
measurements for M = 1 and multiply the resulting description size
by M . Of course this is somewhat unfair to Monero, given that a
more efficient version of the protocol could simply encode multiple
real transactions within a single set T .

10In practice, Monero’s sampling is more complicated. Monero uses
two sets, one of “recent” transaction outputs, and another of “all
previous” transaction outputs, and ensures that at least 50% of the
resulting transactions are in the recent set. For simplicity of exposition,
we simulate only the simple process of sampling from the set of all
previous transactions, although our results can easily be adapted to
Monero’s more complicated sampling process.

B. Simulation Results

For this simulation we assume our RSS scheme uses
a 128-bit key k and a 64-bit prime p.11 Larger values for
these parameters are possible, and will have a predictable
impact on our efficiency.

Figure 3 provides an clear visualization of how our
scheme compares to the existing approach used in Mon-
ero and ByteCoin. For both currencies, we plot how
varying N impacts the size in bits of the transaction
list. Because the size of our RSS compact description
depends on M , we offer plots for several values of M .

Monero. As expected, the “current approach” Monero
encoding grows linearly with the number of transactions
included in the transaction list. When only one legitimate
transaction is included (M = 1), we see that for
N ≥ 9 our scheme produces a smaller description
than the current Monero approach. Even as we increase
M to larger values (2, 5), our scheme still outperforms
Monero’s current approach at reasonably small values of
N .

ByteCoin. The “current approach” of ByteCoin is simi-
lar in appearance to Monero, although it differs subtly in
the slope of the line. Again, our scheme proves superior
to ByteCoin’s current approach, though at somewhat
smaller values of N in comparison with Monero. Here,
our scheme offers better cost for N ≥ 4. Additionally,
increasing M only has a small impact on the comparative
efficiency of our scheme.

The reason for the steeper slope of the “current
approach” in the case of ByteCoin is due to the fact
that the currency samples transactions from a uniform
distribution. This causes the transaction indices to be
more evenly spaced, and thus all require roughly the
same number of bits. Since Monero has a preference for
recent transactions, many of the included transactions

11Our results do not include the description of p or `, as we assume
that ` is indicated elsewhere in the transaction (as it is in Monero and
ByteCoin) and that p can be identified deterministically given `.

8

will be numerically close and will therefore produce
more compact differential encodings.

In both cases, our scheme outperforms current ap-
proaches at even relatively small values of N . Addition-
ally, innovations such as new proof techniques [17], [18]
promise dramatic increases to what is considered a prac-
tical value for N . To illustrate the potential cost savings
of our approach at larger values of N , we provide the
following concrete numbers (for an exemplary M = 5):

N RSS (M = 5) Monero ByteCoin

1,000 .06 kB 1.97 kB 5.94 kB
10,000 .06 kB 16.59 kB 55.4 kB

100,000 .06 kB 103.17 kB 497.86 kB

These bandwidth comparisons illustrate the potential
for our scheme to offer significant cost savings in trans-
action bandwidth. For comparison, the current average
total transaction size in Monero (including all proofs and
metadata) as of this writing is approximately 13kB [25].

VII. OTHER APPLICATIONS

Beyond the significant improvements offered in the
area of mixing cryptocurrencies, RSS has the potential
for extensions to a more diverse set of applications.
Generally speaking, the idea behind our scheme is to
enable the insertion of desired values into a distribution,
without revealing where these insertions took place. In
this section we offer two examples of how to leverage
RSS in other areas.

Anonymous Communication. The general concept of
“mixing” is applicable to many anonymous communica-
tions systems. In particular, Rivest et al. originally pro-
posed using ring signatures to add plausible deniability
to email communications [13]. Just as the true input to
a cryptocurrency transaction can be hidden by adding
cover inputs, the true sender of a message can be hidden
by mixing with other identities. If all user public keys
are posted on some publicly accessible bulletin board,
then we can use RSS to efficiently sample this data
according to some distribution. Thus, senders would be
able to construct large, yet compact, anonymity sets for
themselves. Of course, just as in the cryptocurrency case,
auxiliary data such a cryptographic proof will determine
the total bandwidth overhead.

Client-Server Puzzles. A somewhat different applica-
tion of RSS comes from Client-Server Puzzles [26],
which generally involves one party requiring another
party to complete some computationally intensive task.

A common example is searching the domain of some
hash function for an output that satisfies a particular
requirement. RSS allows the puzzle creator more control
over the search space. They might choose to place the
solution at a specific position or modify the difficulty of
the puzzle by changing the number of solutions present.
Alternatively they could introduce trapdoors into the
puzzle, by placing a solution at an index that an honest
client can compute using their shared secrets.

This is far from a comprehensive list of the applica-
tions of RSS, and a future extension of this work is to
explore and enumerate the possibilities.

VIII. RELATED WORK

a) Anonymity for cryptocurrencies: In addition to
the anonymity protocols mentioned earlier, a separate
line of works seek to increase anonymity by Bitcoin
by allowing users to interactively mix transactions (e.g.
CoinJoin [27], CoinShuffle, CoinSwap). A separate line
of work [29], [30] examines off-chain private payments.

b) Improved WI and ZK proof techniques: A dif-
ferent line of work examines the efficiency of privacy-
preserving protocols such as ring signatures, which are
widely used in cryptocurrencies. For example, Dodis
et al. [31] proposed a constant-sized12 RSA-based ring
signature (using an accumulator due to Camenisch and
Lysyanskaya [32]) in the random oracle model. Using a
new proof system in the discrete log setting, Groth and
Kohlweiss recently proposed a concretely efficient tech-
nique with log(n)-sized signatures [33] in the random
oracle model. Most recently, Malavolta and Schröder
proposed an efficient constant-sized group signature in
the CRS model based on zkSNARKs [34].

c) Programmable hash functions: Many works use
programmable hash functions. Hofheinz and Kiltz [20]
offer a canonical paper on the technique, although their
proposals are not precisely suited to our application. A
vast number of works (including for example [35], [36],
[21]) employ these techniques. A noteworthy feature of
some schemes similar to ours, (e.g., the Hohenberger-
Waters signature [21]) is that those schemes require
statistical properties from underlying hash function f ,
and thus achieve security in the standard model even
when the hash function is a PRF with a non-secret
seed. Developing an RSS in the standard model is an
interesting open problem.

12For convenience we ignore the security parameter. In practice,
such “constant-sized” schemes have bandwidth O(λ).

9

Fig. 3. Size of the transaction list T in bits for two popular cryptocurrencies, Monero (left) and ByteCoin (right). “Current approach” indicates
the representation of the transaction list as a function of N (the number of transactions on the list). Note that this value is (mosty) independent
of M , so we do not illustrate different values of M . “RSS” indicates the cost of the compact description W for different values of M , N . For
ByteCoin we use ` = 2, 000, 000 and for Monero we use ` = 4, 000, 000.

IX. CONCLUSION

In this work we described a new approach to describ-
ing transaction sets in deployed mixing cryptocurrencies
such as Monero and ByteCoin. We believe that our tech-
nique is promising and can offer substantial bandwidth
improvements when the total size of the transaction set
is large. Our work leaves several open questions. In
particular, we believe that there may be many other
applications for this technique. Additionally, we desire
a scheme that offers security without relying on random
oracles.

Acknowledgements. This work was supported by: The
National Science Foundation under awards EFRI-
1441209 and CNS-1414023; Google ATAP; The Mozilla
Foundation; and the Office of Naval Research under
contract N00014-15-1-2778.

REFERENCES

[1] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. Mc-
Coy, G. M. Voelker, and S. Savage, “A fistful of bitcoins: Charac-
terizing payments among men with no names,” in Proceedings of
the 2013 Conference on Internet Measurement Conference, ser.
IMC ’13, 2013.

[2] D. Ron and A. Shamir, “Quantitative Analysis of the Full Bitcoin
Transaction Graph,” in Financial Cryptography ’13, 2013.

[3] Block Chain Analysis, “Block chain analysis,” http://www.
block-chain-analysis.com/, 2014.

[4] H. A. Kalodner, S. Goldfeder, A. Chator, M. Möser,
and A. Narayanan, “BlockSci: Design and applications of
a blockchain analysis platform,” Arxiv.org, 2017. [Online].
Available: http://arxiv.org/abs/1709.02489

[5] A. Miller, M. Moeser, K. Lee, and A. Narayanan, “An empirical
analysis of linkability in the Monero blockchain,” Available at
https://arxiv.org/abs/1704.04299, 2017.

[6] Chainalysis, “Chainalysis inc,” https://chainalysis.com/, 2017.
[7] Elliptic, “Elliptic enterprises limited,” https://www.elliptic.co/,

2017.

[8] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers,
E. Tromer, and M. Virza, “Zerocash: Decentralized anonymous
payments from bitcoin,” in IEEE Security and Privacy, 2014.

[9] N. van Saberhagen, “Cryptonote v2.0,” Available at https://
cryptonote.org/whitepaper.pdf, October 2013.

[10] I. Miers, C. Garman, M. Green, and A. D. Rubin, “Zerocoin:
Anonymous distributed e-cash from Bitcoin,” in Proceedings of
the 2013 IEEE Symposium on Security and Privacy, ser. SP ’13,
2013.

[11] S. Noether, “Ring signature confidential transactions for
monero,” IACR Cryptology ePrint Archive, vol. 2015, p. 1098,
2015. [Online]. Available: http://eprint.iacr.org/2015/1098

[12] A. Pfitzmann and M. Köhntopp, “Anonymity, unobservability,
and pseudonymity—a proposal for terminology,” in Designing
privacy enhancing technologies. Springer, 2001, pp. 1–9.

[13] R. L. Rivest, A. Shamir, and Y. Tauman, “How to leak a secret,”
in ASIACRYPT ’01, C. Boyd, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2001, pp. 552–565.

[14] B. Parno, C. Gentry, J. Howell, and M. Raykova, “Pinocchio:
Nearly practical verifiable computation,” in Proceedings of the
34th IEEE Symposium on Security and Privacy, ser. Oakland ’13,
2013, pp. 238–252.

[15] “The Monero Currency,” Available at https://getmonero.org/,
2017.

[16] J. Buntinx, “What is RuffCT and How Will It Affect Monero?”
The Merkle, 2017.

[17] S.-F. Sun, M. H. Au, J. K. Liu, and T. H. Yuen, “RingCT 2.0:
A compact accumulator-based (linkable ring signature) protocol
for blockchain cryptocurrency Monero,” in ESORICS 2017, S. N.
Foley, D. Gollmann, and E. Snekkenes, Eds. Cham: Springer
International Publishing, 2017, pp. 456–474.

[18] “What is StringCT/RuffCT?” Available at https://monero.
stackexchange.com/questions/5997/what-is-stringct/5999#5999,
2017.

[19] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and
G. Maxwell, “Bulletproofs: Efficient range proofs for confidential
transactions,” Tech. Rep.

[20] D. Hofheinz and E. Kiltz, “Programmable hash functions and
their applications,” in CRYPTO 2008, D. Wagner, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 21–38.

[21] S. Hohenberger and B. Waters, “Realizing hash-and-sign signa-
tures under standard assumptions,” in Advances in Cryptology -

10

EUROCRYPT 2009, A. Joux, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 333–350.

[22] “Bytecoin,” At https://bytecoin.org/.
[23] A. Juels and J. G. Brainard, “Client puzzles: A cryptographic

countermeasure against connection depletion attacks.” in NDSS,
vol. 99, 1999, pp. 151–165.

[24] A. Chator and M. Green, “How to squeeze a crowd: Reducing
bandwidth in mixing cryptocurrencies,” Available at https://isi.
jhu.edu/∼mgreen/mixing.pdf, February 2018.

[25] “Xmrchain,” Available at https://xmrchain.net/, 2017.
[26] A. Juels and J. G. Brainard, “Client puzzles: A cryptographic

countermeasure against connection depletion attacks.” in NDSS,
vol. 99, 1999, pp. 151–165.

[27] G. Maxwell, “CoinJoin: Bitcoin privacy for the real world,”
Available at https://bitcointalk.org/index.php?topic=279249.0,
August 2013.

[28] G. Maxwell and A. Poelstra, “Borromean ring signatures,” Avail-
able at https://github.com/Blockstream/borromean paper, 2015.

[29] E. Heilman, F. Baldimtsi, and S. Goldberg, “Blindly Signed Con-
tracts: Anonymous On-Blockchain and Off-Blockchain Bitcoin
Transactions,” in BITCOIN ’16, 2016.

[30] M. D. Green and I. Miers, “Bolt: Anonymous payment channels
for decentralized currencies,” in CCS ’16, vol. 2016, 2016.
[Online]. Available: http://eprint.iacr.org/2016/701

[31] Y. Dodis, A. Kiayias, A. Nicolosi, and V. Shoup, “Anonymous
identification in ad hoc groups,” in Advances in Cryptology -
EUROCRYPT 2004, International Conference on the Theory
and Applications of Cryptographic Techniques, Interlaken,
Switzerland, May 2-6, 2004, Proceedings, 2004, pp. 609–626.
[Online]. Available: https://doi.org/10.1007/978-3-540-24676-3
36

[32] J. Camenisch and A. Lysyanskaya, “Dynamic accumulators and
application to efficient revocation of anonymous credentials,”
in CRYPTO ’02, 2002, extended Abstract. [Online]. Available:
http://cs.brown.edu/∼anna/papers/camlys02.pdf

[33] J. Groth and M. Kohlweiss, “One-out-of-many proofs: Or
how to leak a secret and spend a coin,” in Advances in
Cryptology - EUROCRYPT 2015 - 34th Annual International
Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings,
Part II, 2015, pp. 253–280. [Online]. Available: https:
//doi.org/10.1007/978-3-662-46803-6 9

[34] G. Malavolta and D. Schröder, “Efficient ring signatures in the
standard model,” In ASIACRYPT ’17, 2017.

[35] D. Boneh and X. Boyen, “Efficient selective-ID secure Identity-
Based Encryption without random oracles.” in EUROCRYPT ’04,
vol. 3027 of LNCS, 2004, pp. 223–238.

[36] B. Waters, “Efficient Identity-Based Encryption without random
oracles,” in EUROCRYPT ’05, vol. 3494 of LNCS, 2005, pp.
114–127.

11

