
WiP: An Investigation of Large Language Models and Their
Vulnerabilities in Spam Detection

Qiyao Tang
qtang16@jh.edu

Johns Hopkins University
Baltimore, Maryland, USA

Xiangyang Li∗
xyli@jhu.edu

Johns Hopkins University
Baltimore, Maryland, USA

Abstract
Spam messages continue to present significant challenges to digi-
tal users, cluttering inboxes and posing security risks. Traditional
spam detection methods, including rules-based, collaborative, and
machine learning approaches, struggle to keep up with the rapidly
evolving tactics employed by spammers. This project studies new
spamdetection systems that leverage Large LanguageModels (LLMs)
fine-tuned with spam datasets. More importantly, we want to un-
derstand how LLM-based spam detection systems perform under
adversarial attacks that purposefully modify spam emails and data
poisoning attacks that exploit the differences between the training
data and the massages in detection, to which traditional machine
learning models are shown to be vulnerable. This experimenta-
tion employs two LLM models of GPT2 and BERT and three spam
datasets of Enron, LingSpam, and SMSspamCollection for extensive
training and testing tasks. The results show that, while they can
function as effective spam filters, the LLM models are susceptible
to the adversarial and data poisoning attacks. This research pro-
vides very useful insights for future applications of LLM models
for information security.

Keywords
Large Language Model, Spam Detection, Adversarial Attack, Data
Poisoning Attack

1 Introduction
Spam messages have become significant challenges to computer
users. They not only clutter inboxes but also pose security risks.
Rules-based, collaborative, and content-based spam detection ap-
proaches have been proposed, but these methods are brittle and
hard to generalize. Then spam detections combining machine learn-
ing are explored for better accuracy and efficiency.

However, developing an adaptable and accurate spam detection
system remains a significant challenge due to the constantly evolv-
ing strategies employed by spammers. With the recent development
of AI technologies, this problemmay be tackled by leveraging Large
Language Models (LLMs), trained deep learning models with re-
markable capabilities to comprehend and learn from the structural
and semantic patterns found in natural language data.

1.1 Motivation
LLMs are trained on diverse natural language datasets. Fine-tuning
these models on curated spam datasets is essential to enhance
their specificity and effectiveness in spam detection. Moreover, not
enough efforts have been devoted to understanding the vulnerabili-
ties and robustness of LLM-based spam filters.

This study aims to bridge this gap by fine-tuning LLMs for spam
classification and assessing their susceptibility to adversarial at-
tacks and data poisoning attacks. By developing and testing these
attack strategies, we evaluate the robustness of LLM-based sys-
tems and discusses potential defense mechanisms to mitigate these
adversarial threats.

This paper addresses the following three research questions:

(1) Can LLM models support the development of spam detec-
tion systems that effectively classify ham and spam emails
or messages?

(2) Are LLM-based spam detection models vulnerable to ad-
versarial attacks that modify spam messages with special
words or sentences to increase their chance of bypassing
detection?

(3) Is an LLM-based spam detection model’s performance af-
fected by the training data that has different information
characteristics from the emails or messages in detection?

1.2 Objectives
Spam detection systems, even those powered by advanced machine
learning and AI models, are not immune to adversarial attacks. One
particularly effective attack involves the insertion of carefully cho-
sen "good words" or "magic words" that exploit the weaknesses of a
model [1][2]. These words are purposefully identified to manipulate
the decision boundary of a classifier, causing an error in its predic-
tion. Moreover, differences in the linguistic patterns and contextual
features of the emails or messages used to train a spam detection
model from those being scrutinized in deployment may obstruct
a spam filter from making correct classifications. This disparity
is exploited by data poisoning attacks, where maliciously crafted
training data is introduced to compromise the model’s ability to
generalize in detection.

In this project, we build several spam detection systems to ex-
amine their effectiveness. Moreover, we explore the impact of the
above adversarial and data poisoning attacks on these LLM-based
spam detection models.

• This project studies the capabilities of two LLMs of GPT2
and BERT for spam detection. A set of spam filters are
trained by fine-tuning these two base LLMs using three
spam datasets of Enron, LingSpam, and SMSspamCollection
to optimize their classification performance. Then we com-
pare their spam detection performance on these datasets.

• Through a black-box adversarial attack, we apply "magic
words" identified for an SVM classifier to attack the LLM
spam detection models. These words are found by an ap-
proach that employs Projected Gradient Descent (PGD)

Qiyao Tang and Xiangyang Li

perturbations to the TF-IDF features of spam emails, as de-
scribed in [3]. We place these words or composed sentences
in different positions within spam emails, e.g., the begin-
ning, after the first sentence, or after the second sentence,
etc., to observe their effects on the models’ performance.
This analysis not only highlights the vulnerabilities inher-
ent in LLMs but also provides insights into the design of
more robust spam detection mechanisms capable of resist-
ing adversarial manipulation.

• We simulate data poisoning attacks by training a spam de-
tection model on one dataset, such as LingSpam, but testing
it against heterogeneous emails or messages, such as those
from a different dataset of Enron. This cross-dataset evalu-
ation aims to examine the effect of differences in training
and testing data on model performance in a scenario similar
to data poisoning. By analyzing the model’s misclassifica-
tions, we seek to understand the vulnerabilities that arise
from dataset-specific biases. Such insights can be useful to
develop strategies to mitigate the related risks.

2 Related Work
Early spam detection approaches relied heavily on rules-based sys-
tems and statistical models which, often struggled with adaptability
to new spam tactics. The introduction of machine learning brought
methods offered improved generalization but were limited in han-
dling the complexity of modern spam content.

Recent advancements in deep learning, particularly the emer-
gence of LLMs, have significantly enhanced the ability to under-
stand the semantic and syntactic structures of language. These
models have shown promise in spam detection tasks by leveraging
pre-trained knowledge and fine-tuning on domain-specific datasets.
However, the robustness of LLM-based spam detection systems
against adversarial attacks and their generalizability to spam data
remain understudied areas of research.

2.1 Spam Detection Using Machine Learning
Leading email service providers, including Gmail, Yahoo Mail, and
Outlook have long relied on advanced machine learning (ML) tech-
niques, to enhance their spamfiltering systems. For instance, Google’s
spam detection models, which incorporate tools like Google Safe
Browsing, achieve a detection rate of 99.9%, allowing only one in a
thousand spam messages to bypass their filters [4].

These models leverage vast amounts of data to identify and
classify spam and phishing emails with remarkable accuracy. Un-
like traditional rule-based systems, modern ML-based spam filters
dynamically generate new detection rules based on continuous
learning from incoming messages, employing several approaches:

• Content-based Filtering: Content-based filtering is a widely
employed method for automatically generating filtering
rules and classifying emails using various machine learn-
ing algorithms, such as Naïve Bayes and Support Vector
Machines (SVM). This approach typically examines the text
within emails, analyzing the frequency, distribution, and
patterns of words and phrases. The insights derived from
this analysis are then utilized to create rules that help in
identifying and blocking spam emails effectively [5].

• Case-based/Sample-based Filtering: This widely used ap-
proach begins by collecting all emails, including spam and
non-spam. The processing transforms emails, extracts and
selects relevant features, and groups the data into two vec-
tor sets. Finally, machine learning algorithms are employed
to train and test the datasets, enabling the classification of
incoming emails as either spam or non-spam [5].

• Rule-based Filtering: This method relies on predefined rules
to analyze patterns within emails, often employing regu-
lar expressions to match specific message characteristics.
When a message aligns with multiple patterns, its score
increases, whereas mismatched patterns lead to a reduc-
tion in the score. Messages with scores exceeding a certain
threshold are classified as spam. While some rules remain
static, others require frequent updates to adapt to evolving
spam techniques, as spammers continuously devise new
strategies to bypass email filters [4].

2.2 Spam Detection Using Large Language
Model

By understanding and learning complex semantic and structural
patterns in text, recent advancements in the use of Large Language
Models (LLMs) have demonstrated significant potential in improv-
ing email spam detection. In a recent study [6], the authors compare
the performance of LLMs such as RoBERTa, SetFit, and Flan-T5.

• RoBERTa: A refined version of BERT, RoBERTa improves
training stability and performance by leveraging larger
datasets and longer training times. It has been used to clas-
sify email text with high precision.

• SetFit: SetFit (Sentence Transformer Fine Tuning) employs
contrastive learning to create high-quality embeddingswith
fewer parameters. Its lightweight nature allows efficient
deployment while achieving competitive accuracy.

• Spam-T5: Spam-T5, a fine-tuned version of Flan-T5, has
shown state-of-the-art performance in spam detection tasks.
By framing the task as a sequence-to-sequence problem,
Spam-T5 generates labels like “spam” or “ham” directly,
with remarkable results.

This study compared LLMs against traditional methods (e.g.,
Naïve Bayes, SVM, XGBoost) across datasets like LingSpam, SMSs-
pamCollection, SpamAssassin, and Enron. The results showed that
LLMs consistently outperformed traditional machine learningmeth-
ods. Specially, Spam-T5 achieved the highest levels of accuracy,
performing well not only when trained with large datasets but also
excelling in few-shot learning scenarios where few labeled exam-
ples were available. This is particularly important because spam
detection systems need to be adaptable and robust, able to identify
new types of spam. Additionally, it seems that LLMs are more ro-
bust against adversarial attacks, where spammers deliberately alter
email content to evade detection by spam filters.

2.3 Adversarial Attacks on Spam Detection
Spammers have developed sophisticated techniques in the hope to
bypass detection by several distinct strategies [7]:

WiP: An Investigation of Large Language Models and Their Vulnerabilities in Spam Detection

• Tokenization: Spammers disrupt the feature selection pro-
cess by altering the structure of messages. Common tac-
tics include splitting key words with spaces or leveraging
HTML, JavaScript, or CSS layout tricks to obscure the mes-
sage’s true content.

• Obfuscation: This involves concealing the message’s con-
tents through encoding or misdirection. Techniques include
HTML entity encoding, URL encoding, letter substitution,
and formats like Base64 or Quoted-printable encoding.

• Statistical Attacks: These attacks manipulate message statis-
tics to confuse filters. For example, Weak Statistical Attacks
Use purely random data, such as inserting random words,
fake HTML tags, or nonsensical text excerpts, to distort
the message’s features. On the other hand, Strong Statis-
tical Attacks employ more targeted and informed data to
improve success rates. These attacks often rely on feedback
mechanisms to refine their methods based on which spam
messages bypass filters successfully.

One important study is the "good word attack" [1]. Researchers
found that a relatively small number of well-chosen words can be
added to a spam email to trick filters, such as those using naive
Bayes and maximum entropy models, into classifying it as legit-
imate. These words are identified by statistically evaluating the
effect of different combinations of words on these models.

In another study of "Magic Word attack" [3], the authors pro-
posed a newmethod of crafting adversarial examples that translates
the findings of adversarial manipulations in the feature space, e.g.,
TF-IDF or Word2Vec vectors, back to changes to be made in the
problem space, e.g., emails. Projected Gradient Descent (PGD) can
iteratively apply small, constrained perturbations to the features to
induce the misclassification by a spam detection model [8]. Then, a
small set of "magic words" are determined by examining their corre-
sponding features that, after small perturbations during this process,
have the most significant influences on the classification outcomes.
These words can be added to spam emails without changing their
nature.

In a comprehensive evaluation of this method [2], the researchers
utilized different datasets, feature extraction methods, and machine
learning models. The technical workflow is shown in Figure 1. The
feature extractionmethods include TF-IDF,Word2Vec, andDoc2Vec.
The PGD perturbations are conducted on a trained SVM model to
identify the magic words. In white-box attacks, these words are
tested for their effectiveness on the same SVM as the target. In
black-box attacks, the targetmodels being attacked includeDecision
Tree, Logistic Regression, MLP, and an ensemble classifier using
these three models. In gray-box attacks, the target model may be a
SVM model but using a different feature extraction method. In the
last two cases, the adversary has no or limited knowledge of the
target spam filter system. The "magic word attack" has proven to
be effective on traditional machine learning models in all the attack
scenarios.

3 Methodology
3.1 Large Language Model for Spam Detection
The code used is based on a previous work [9]. The tasks include
training and testing LLM models on spam datasets.

Datasets: The dataset comprises labeled data of spam emails or
short messages, where each entry is categorized as either spam or
ham (non-spam). Only the message content, plus the subject for an
email, is used.

Data Preprocessing: A tokenizer provided by the specific LLM
framework, i.e., Hugging Face’s transformers, is used. The tok-
enizer converts a message to numerical representations in PyTorch-
compatible tensor formats.

Data Splitting and Loader Initialization: The preprocessed
information is divided into training and testing sets using an 80-20
split. The training subset is used to optimize the model, while the
testing subset evaluates its performance.

Model Selection: The base LLMs are fine-tuned for binary clas-
sification tasks by adding a classification head, which is a fully
connected layer customized for two-class prediction output (spam
or ham).

Evaluation: At the end of each epoch, the model is evaluated
on the testing set to assess its performance. Several performance
metrics are collected including accuracy, precision, F1 Score, false
positive rate (FPR), and False Negative Rate (FNR). Among them, FNR
quantifies the proportion of the spam emails incorrectly classified as
ham. This measure is important in the result analysis of adversarial
attacks.

3.2 Adversarial Attack Using "Magic Words" and
"Magic Sentences"

The process of identifying "magic words" follows the steps in Figure
1 for the previously described works [2][3]. A code implementation
of this attack is available [10]. Moreover, the specially selected
words are made into sentences in the evaluation. We are interested
to characterize their effect on LLM-enabled spam detection models
that are supposed to understand nuanced linguistic structures.

Data Processing: A spam dataset is divided into three subsets:
training (64%), validation (16%), and testing (20%). The validation
set is needed for identifying the "magic words". The preprocessing
step prepares the emails by removing numbers, punctuation, and
common English stop words, and applying stemming to reduce
words to their root forms.

Training a Classifier: This study used the Term Frequency-
Inverse Document Frequency (TF-IDF) method that represents one
email as a vector of TF-IDF values corresponding to all the words
in the vocabulary used by a dataset. Then, a Support Vector Machine
(SVM) classifier is trained using the training subset.

Finding Magic Words: The Projected Gradient Descent (PGD)
method is used to perturb the TF-IDF feature vectors of a number
of randomly selected spam emails from the validation subset. The
controlledmodifications to these feature vectorsmay cause the SVM
classifier to flip the classification from spam to ham successfully.

Then, the set of "magic words" is the intersection of two sets
of words. Top Perturbation Words are the words whose features
are changed the most during the successful perturbations that flip
the classification of a spam email to "ham". Unique Ham Words are
those words that exclusively appear in ham emails. Intuitively, the
features of these words in their intersection increase from zero, as
they are not in the original spam emails, to positive values after
perturbation, as they appear in the modified feature vectors.

Qiyao Tang and Xiangyang Li

Figure 1: Adversarial attacks that perturb email features, craft adversarial spam emails by adding specially identified magic
words, and conduct white/gray/black-box attacks, as in [2] (This paper studies black-box attacks on LLM-enabled spam
classifiers.)

We can control the number of magic words by limiting the size
of Top Perturbation Words in consideration. Usually adding a small
set of these words has shown to be effective to make a spam email
to bypass detection, i.e., resulting in a false negative error. More
information on identifying magic words is in [2][3].

Making "MagicWords" into "Magic Sentences": Themachine
learning models evaluated in the previous works consider all the
words of an email at once in a rather "coarse" view, without looking
at the order of them. So, the structure of combining the magic
words when we add them to a spam message does not matter for
these spam filters. On the other hand, LLMs perform semantic
analysis and comprehend the words in their local context, i.e., the
order in which they are associated with each other. As a result,
we hypothesize that inserting magic words directly may not be as
effective against LLMs as using meaningful and coherent sentences
containing these words.

Injecting Point of "Magic Words" and "Magic Sentences":
Moreover, we examine such attacks systematically by placing these
words or sentences at different positions within the message, e.g.,
at the beginning, after the first, second, and third sentence, or
at the end. This is important as LLM-based systems, similar to a
human reader, use information seen in the past to process the word
embeddings in current attention.

The use of words or sentences and the injection point bear con-
sequence on the overall success of a spam message. Spam detection
has two layers. The human email user still processes it even if
the message can evade the spam filter. Reading these words sim-
ply thrown together, unrelated to the rest of the email and hardly
meaningful, likely raises a red flag to the user. At the same time,
burying them deep rather than putting them early in the email
helps to make them less visible to the reader.

The evaluation adds the magic words or sentences to the spam
messages of the same testing subset in Section 3.1, and feeds them to
the LLM spam filters, in a black-box attack. For adversarial attacks,
an increase in FNR indicates the success of such attacks, as these
modified messages bypass the detection with higher probabilities.

3.3 Cross-dataset "Data Poisoning" Attack
We train the model on one dataset and test it on another. This
approach simulates real-world scenarios where spam filters are
exposed to emails in detection that differ from their training data
in terms of structure, language patterns, and feature distribution. A
significant drop in performance may indicate the model’s vulnera-
bility to challenges similar to data poisoning attacks, especially in
a dynamic working environment where the nature of spam emails
constantly evolves.

WiP: An Investigation of Large Language Models and Their Vulnerabilities in Spam Detection

4 Experimental Design
4.1 Use of Datasets
We selected three widely used datasets: Enron, LingSpam, and SMSs-
pamCollection. Each dataset represents different characteristics
of email or message communication, providing a diverse testing
ground for the experiments.

Enron Dataset: The Enron dataset is a large-scale collection
of emails. It contains over 33,092 emails, though smaller subsets
are often used for spam detection tasks. The portion of the spam
and ham is approximately 50% to 50%. Enron dataset is one of
the most realistic benchmarks in a business setting for evaluating
email-based spam detection models.

LingSpam Dataset: The LingSpam dataset is a collection of
2,827 emails, primarily sourced from the Linguist mailing list. 468
of these emails are spam, while the rest are ham emails. This dataset
is notable for its focus on professional communication and academic
discussions.

SMSspamCollection: The SMSspamCollection dataset com-
prises 5,572 text messages, with approximately 13.4% labeled as
spam and the rest as ham. Unlike email datasets, this collection
captures the characteristics of mobile communication, including
short message length, informal language, and abbreviations. Its fo-
cus on SMS communication makes it a resource for evaluating the
adaptability of spam detection techniques across different mediums.

4.2 Use of Large Language Models
The experiments focused on two LLMs: GPT2 and BERT. The setup
involves data preprocessing, model training, validation, and evalu-
ation on multiple metrics.

Data Preprocessing: Preprocessing was performed using to-
kenizers specific to each LLM. For GPT2, the GPT2Tokenizer was
used, and for BERT, the BertTokenizer was employed. Each message
was tokenized into input IDs and attention masks with a maximum
sequence length of 32 tokens. Special tokens, e.g., [CLS], [SEP] for
BERT, and <|endoftext|> for GPT2, were added automatically during
tokenization. Tokenized data was split into training and testing
sets, and PyTorch TensorDataset and DataLoader were used to
create batches for efficient processing.

Model Initialization: Two pre-trained models, BertForSequence-
Classification and GPT2ForSequenceClassification, were fine-tuned
for binary classification tasks. Both models were initialized with
their pre-trained weights and modified to include a classification
head for predicting spam and ham labels.

Training: Each model was fine-tuned separately for two epochs.
During each epoch, the training loss was calculated for every batch
using the cross-entropy loss function. The training process used the
AdamW optimizer with a learning rate of 5 × 10−5. The optimizer
updated model weights through gradient backpropagation. After
each epoch, the models’ performance was evaluated on the testing
set to monitor progress and prevent data over-fitting.

4.3 Experimentation Environment
All experiments were conducted using Pythonwith the transformers
libraries in the environment of Anaconda 3 Jupyter Notebook. The
computational setup included a CPU-enabled system for efficient

training and inference. The models were also trained on a GPU-
enabled systemwhenever possible to accelerate computations. Both
models shared identical experimental conditions to ensure a fair
comparison of their performance.

5 Result Analysis
5.1 Spam Detection Result
Table 1 summarizes the performance of GPT2 and BERT evaluated
across the three datasets of Enron, LingSpam, and SMSspamCollec-
tion.

Enron Dataset: GPT2 demonstrates consistently low FNR and
FPR values, with significant improvements from Epoch 1 to Epoch
2. The Accuracy improved from 98.43% to 98.82%, and the F1 Score
also showed a slight increase. BERT Shows higher FNR compared
to GPT2 after Epoch 1, but a significant improvement is observed in
Epoch 2. Overall, BERT has higher FNR but lower FPR than GPT2,
although the differences are small. Such differences may be factors
in selecting these models for spam detection, informing a decision
maker who puts more weight on detecting all the spams or avoiding
missing legitimate messages.

LingSpam Dataset: GPT2 struggles in Epoch 1 with a high
FNR (11.32%), but Epoch 2 demonstrated notable improvements in
all metrics. The F1 Score increases from 89.62% to 91.99%. BERT
achieves perfect FNR (0%) in Epoch 1, albeit with a higher FPR
(5.19%). However, after Epoch 2, FPR reduces to 0%, resulting in an
F1 Score of 98.93%. This makes BERT exceptionally effective on this
dataset after sufficient training.

SMSspamCollection Dataset: GPT2 achieves high Accuracy
in both epochs, with Epoch 2 performing better (99.29%). However,
Precision shows a slight trade-off, suggesting sensitivity to the
dataset’s characteristics. BERT achieves perfect Precision (100%)
in Epoch 1 but showed a drop in Epoch 2, accompanied by an
increase in FPR and FNR. These variations highlight the model’s
sensitivity to nuances in this dataset as these text messages contain
considerably less information.

The results seem to tell a few useful points about the use of LLMs
in spam detection:

• LLM Model Comparison: GPT2 generally exhibits robust
performance across all datasets, but its FNR is slightly less
consistent compared to BERT. Overall, BERT excels in FNR
across the dataset, making it a strong candidate if the goal
is to block all spams.

• Dataset Comparison: The overall trends of these two models
seem compatible with each other over the two spam email
datasets. However, they let more spam messages through
without being flagged for SMSspamCollection, suggesting
a challenge likely due to less information in a short text
message.

• Impact of Training Epoch: In general, both models show
notable improvements from Epoch 1 to Epoch 2 across all
datasets, with reduced FNR, FPR, and Train Loss values.

5.2 Adversarial Attack Result
Magic Words and Sentences Used: For the Enron dataset, 11
"magic words" were identified:

Qiyao Tang and Xiangyang Li

Table 1: Spam Detection Performance Using GPT2 and BERT

Dataset Model Epoch FNR FPR Accuracy Precision F1 Score Train Loss
Enron GPT2 1 1.15% 1.99% 98.43% 98.09% 98.45% 11.18%
Enron GPT2 2 0.91% 1.45% 98.82% 98.55% 98.60% 3.04%
Enron BERT 1 3.51% 0.60% 97.95% 99.38% 97.99% 7.83%
Enron BERT 2 1.21% 0.96% 98.91% 99.03% 98.68% 1.99%
LingSpam GPT2 1 11.32% 0.00% 97.92% 94.44% 89.62% 15.67%
LingSpam GPT2 2 3.31% 0.43% 98.96% 93.52% 91.99% 2.90%
LingSpam BERT 1 0.00% 5.19% 95.77% 81.54% 89.20% 11.82%
LingSpam BERT 2 1.89% 0.00% 99.65% 100.00% 98.93% 4.29%
SMSspamCollection GPT2 1 6.74% 0.00% 98.93% 97.14% 94.27% 15.07%
SMSspamCollection GPT2 2 3.37% 0.21% 99.29% 96.19% 95.30% 4.51%
SMSspamCollection BERT 1 6.74% 0.00% 98.92% 100.00% 96.30% 8.23%
SMSspamCollection BERT 2 2.25% 2.13% 97.85% 89.69% 93.42% 2.49%

sitara cera kaminski kal listbot ena erisk reactionsnet
enrononline lavo lokay

We created the following "magic sentence" from these words:
Sitara, Cera, and Kaminski collaborated on a project
that utilized ListBot and Ena, analyzing data from
Erisk, ReactionsNet, and EnronOnline, while drawing
inspiration from Lavo and Lokay.

The 23 "magic words" identified from the LingSpam dataset are:
translation cascadilla workshop proceeding benjamin
academic ldc chorus native colingacl french sentence
pkzip euralex linguistic risked ammondt phonetic
arizona grammar ipa theory linguist

We crafted the following two sentences based on these words:
Academic linguist Benjamin pkzips phonetic sentence
translation grammar theory in Euralex COLING/ACL
workshop proceeding in Arizona. Native French Am-
mondt risked the linguistic IPA Chorus of LDC Cas-
cadilla.

The SMSspamCollection dataset was also analyzed, yielding
69 identified Magic Words. However, this dataset is unique with
short text messages. Incorporating a large number of "magic words"
significantly alters the structure and nature of a message. Therefore,
we did not try attacks on this SMSspamCollection dataset.

Results: Our analysis focuses primarily on False Negative Rate
(FNR), as it serves as the success rate of these attacks. The results
are given in Tables 2 and 3. They are also plotted in Figures 2-5 for
easier comparison.

Here we first explain the notations used in the tables and figures.
• word/sentence@number indicates the attack method and the

injection point.
• word/sentence is one of two attack methods, i.e., "magic

words" or "magic sentences".
• @number is the position of these words/sentences being

added to an email, i.e., 0-at the beginning, 1-after the first
sentence, 2-after the second sentence, etc.

• @end means the very end of the email.
• None is for the result under no attack, i.e., baseline FNR.

Analysis: Over the ste of experiments, we can clearly see that
success rate varies significantly depending on the attack method
and the injection point .

• Effectiveness of Injection Point: When the "magic words"
or "magic sentences" are inserted at the beginning of the
email, the FNR consistently reached 100% for all the models
trained on both datasets. This indicates a complete failure
of the models to flag any spam emails. When these words
or sentences are injected later in the emails, e.g., moving
to @1, @2, @3, and @end, the attack success rate shows a
gradual decline. But it remains elevated compared to the
baseline case. For instance, when magic words are injected
after first sentence, the FNR ranges between 27% to 53%
approximately. However, compared to the original baseline
performance, injecting them at the end of the messages
only incurs a minor increase in FNR. This positional dif-
ference is due to how LLM models use established context
information, i.e., seen early on in an email, to impact the
later content of the email.

• Comparison of Word-based and Sentence-Based Attacks: In-
terestingly, these two attack methods show different charac-
teristics. Arguably sentence-based attacks are slightly more
effective overall than word-based attacks. They maintain a
higher impact when the injection point is toward the start
of the email, e.g., after the first sentence. However, their
impact may drop more quickly in several experiments when
the injection point moves down the email. The effectiveness
of these two methods is mixed when the injection point
is at the end of an email, when it is "too late" to maximize
their effect on the processing of this email.

• LLM Model Comparison: It is hard to conclude the differ-
ences between these two models facing adversarial attacks
based on the numbers in the two tables. Examining the plots
in the four figures, BERT seems in general has lower FNR
rates, i.e., higher resistance to an attack, at intermediate
injection points. These injection points, not at the immedi-
ate start of an email, are likely more practical choices for
spammers in these attacks. How these two models perform
also vary for the two datasets. It is certainly worth further

WiP: An Investigation of Large Language Models and Their Vulnerabilities in Spam Detection

Table 2: Adversarial Attack Success Rate on the Enron Dataset

Attack Method/Injection Point GPT2-Epoch1 GPT2-Epoch2 BERT-Epoch1 BERT-Epoch2
word@0 100.00% 100.00% 100.00% 100.00%
word@1 27.31% 32.84% 37.95% 34.50%
word@2 24.33% 24.96% 11.40% 16.93%
word@3 8.75% 10.20% 5.11% 13.08%
word@end 1.47% 5.38% 3.64% 2.77%
sentence@0 100.00% 100.00% 100.00% 100.00%
sentence@1 44.48% 49.80% 52.93% 37.65%
sentence@2 17.35% 23.43% 26.05% 23.19%
sentence@3 10.41% 11.34% 4.03% 4.99%
sentence@end 4.81% 2.05% 2.14% 3.58%
None 1.15% 0.91% 3.51% 1.21%

Table 3: Adversarial Attack Success Rate on the LingSpam Dataset

Attack Method/Injection Point GPT2-Epoch1 GPT2-Epoch2 BERT-Epoch1 BERT-Epoch2
word@0 100.00% 100.00% 100.00% 100.00%
word@1 46.94% 42.86% 30.61% 44.90%
word@2 37.76% 32.65% 26.53% 22.45%
word@3 18.37% 20.41% 20.41% 12.24%
word@end 8.16% 10.20% 10.20% 4.08%
sentence@0 100.00% 100.00% 100.00% 100.00%
sentence@1 48.98% 52.04% 50.00% 44.90%
sentence@2 27.84% 26.80% 22.68% 10.31%
sentence@3 15.46% 18.56% 20.62% 20.62%
sentence@end 12.24% 4.08% 4.08% 6.12%
None 11.32% 3.31% 0.00% 1.89%

Figure 2: Success Rate of "Magic Word" Attacks on the Enron Dataset

Qiyao Tang and Xiangyang Li

Figure 3: Success Rate of "Magic Sentence" Attacks on the Enron Dataset

Figure 4: Success Rate of "Magic Word" Attacks on the LingSpam Dataset

investigation of how these and other LLM models respond
to these attacks.

• Impact of Training Epoch: Training the models for an addi-
tional epoch (Epoch 2) leads to mixed results. In fact, for
several injection points, the FNR increases after Epoch 2,
suggesting that additional training might make the models
more susceptible to the adversarial modifications rather
than improving their robustness. This shows again that the

classification accuracy and resistance to adversarial attacks
are two different goals that needs to be managed in a more
comprehensive manner.

5.3 Cross-dataset Poisoning Attack Result
Result Analysis: The results are shown in Tables 4 and 5. The
performance of both models drop significantly in these experiments.

WiP: An Investigation of Large Language Models and Their Vulnerabilities in Spam Detection

Figure 5: Success Rate of "Magic Sentence" Attacks on the LingSpam Dataset

Table 4: Result of Cross-dataset Poisoning Attacks on GPT2

Training Set Testing Set Epoch FNR FPR Accuracy Precision F1 Score Train Loss
LingSpam Enron 1 26.83% 26.90% 73.14% 73.28% 73.23% 30.47%

2 32.21% 11.13% 78.28% 86.00% 75.82% 4.32%
Enron LingSpam 1 9.18% 15.14% 85.89% 55.63% 68.99% 11.18%

2 6.12% 27.51% 76.19% 41.63% 57.68% 3.18%
LingSpam SMSspamCollection 1 15.44% 50.52% 54.17% 20.52% 33.03% 16.45%

2 9.40% 32.19% 70.85% 30.27% 45.38% 2.94%
SMSspamCollection LingSpam 1 68.37% 14.71% 76.01% 31.00% 31.31% 14.58%

2 67.35% 11.51% 78.84% 37.21% 34.78% 3.84%
Enron SMSspamCollection 1 22.15% 23.29% 76.86% 34.02% 47.35% 17.06%

2 2.01% 71.22% 38.03% 17.51% 29.70% 4.17%
SMSspamCollection Enron 1 63.46% 30.88% 52.76% 54.41% 43.72% 11.61%

2 49.29% 43.31% 53.68% 54.14% 52.37% 3.85%

Table 5: Result of Cross-dataset Poisoning Attacks on BERT

Training Set Testing Set Epoch FNR FPR Accuracy Precision F1 Score Train Loss
LingSpam Enron 1 14.80% 40.40% 72.46% 68.02% 75.65% 12.11%

2 19.31% 40.07% 70.36% 67.01% 73.22% 1.73%
Enron LingSpam 1 5.10% 30.49% 73.90% 39.41% 55.69 7.50% %

2 15.31% 13.43% 86.24% 56.85% 68.03% 2.05%
LingSpam SMSspamCollection 1 0.00% 86.34% 25.20% 15.16% 26.33% 14.00%

2 0.00% 82.61% 28.43% 15.73% 27.19% 2.25%
SMSspamCollection LingSpam 1 50.00% 47.76% 51.85% 17.95% 26.42% 8.16%

2 27.55% 81.66% 27.69% 15.64% 25.72% 3.25%
Enron SMSspamCollection 1 0.67% 79.92% 30.67% 16.09% 27.69% 7.96%

2 0.00% 79.92% 30.76% 16.18% 27.85% 2.07%
SMSspamCollection Enron 1 71.01% 30.91% 48.96% 48.61% 36.32% 12.11%

2 57.17% 36.58% 53.08% 54.14% 47.83% 4.14%

Qiyao Tang and Xiangyang Li

• LLMModel Comparison: It seems that GPT2 shows relatively
lower FPR although suffers in FNR. So, it generally flags
fewer messages as spam. It has a slightly better precision in
detection. Such a spam filter has a "conservative" strategy
in fltering messages. BERT is the opposite with higher FPR
and lower FNR, showing a more "aggressive" style to more
likely flag a message as spam. Such differences may not be
conclusive with just three datasets. But this may shed light
on the different styles of LLMs, useful for model selections
that consider the system requirements influenced by FPR,
FNR, and other criteria.

• Dataset Comparison: The challenge is obvious when the
SMSspamCollection dataset is involved because of its dif-
ference from the two spam email datasets. The FNR rate is
considerably higher when a model trained on SMSspamCol-
lection is tested on an email dataset. Maybe this is because
the strategies employed in SMS spams have evolved as a
subset of those in spam emails. Therefore, training on the
SMS spam messages does not provide the LLM models with
adequate information to use in classifying emails. At the
same time, the FNR performance of an LLM model trained
on an email dataset does not suffer as much in classifying
the messages in the SMSspamCollection dataset. However,
the FPR result seems to deteriorate in all the experiments
involving SMSspamCollection, no matter as the training or
the testing set. An explanation may be that the legitimate
emails and the legitimate short messages are quite different
in their vocabulary and semantic style.

5.4 Additional Discussion
Adversarial Attacks in Real-world Application Scenarios:One
of the most striking observations from the experiments is the signifi-
cant impact of the injection position of themagicwords or sentences
on a model. When they are injected at the beginning of an email,
they dominate the context used to influence how the information
is processed in the downstream, distorting and overshadowing the
real spam cues that the LLM model tries to understand.

In the real-world, this finding presents an interesting dilemma
for attackers employing the "magic word" or "magic sentence" strat-
egy. Placing such attacking material at the very beginning of the
email can, as demonstrated in our experiments, effectively bypass
spam filters. However, it comes with a significant trade-off: the
higher visibility of such redundant information to human readers.
Computer users very likely dismiss this email when the informa-
tion up front appears nonsensical or irrelevant. On the contrary,
burying the attacking material deeper within the email content
makes such "spam cues" less visible to users but has diminishing
effect to increase the chance of the spam email to slip through the
filter. In the deployment of an LLM-based spam detection system,
this insight can be useful to both the attacker and the defender in
their working tactics.

Generalization Challenges in Cross-Dataset Poisoning At-
tacks: The experimentation underscores a fundamental limitation
of LLM-based spam filters in that their dependency on the compre-
hensiveness of training data. Spam filters trained on insufficiently

diverse datasets fail to generalize effectively to unseen or unfamil-
iar data. This is problematic in real-world scenarios where spam
messages keep evolving and take various forms across different
communication platforms. Importantly, we observed that models
trained on longer, information-rich datasets like emails performed
better when tested on shorter SMS messages, than the reverse.
This suggests that models trained on more complex data are better
equipped to adapt to "simpler" information processing tasks, while
the opposite is not true.

6 Conclusion
In this study, we developed spam detection systems based on Large
Language Models (LLMs) including GPT2 and BERT, evaluating
their effectiveness across datasets including Enron, LingSpam, and
SMSspamCollection. Our findings demonstrated that LLMs exhibit
strong potential to capture nuanced patterns in textual data and
leverage their semantic understanding to improve spam detection
accuracy. However, their success depends on training on relevant
and diverse datasets.

Facing adversarial attacks using specially selected "magic words"
and "magic sentences", LLMs have displayed a degree of resilience
when these distractions are added later in a spammessage. However,
their impact has proved that LLM-based spam filters are not im-
mune from an attack strategy that purposefully modifies a message.
Furthermore, cross-dataset testing has revealed the limitations of
LLMs to adapt to differing linguistic structures and information dis-
tributions, suggesting that training with diverse datasets is critical
to their practical deployment.

Future efforts should study newer LLM models with more rep-
resentative datasets to understand their strength and limit. Addi-
tionally, experiments are needed to characterize the vulnerabilities
of these models to a wide range of attacks and to evaluate defense
mechanism to detect these attacks and mitigate their impact.

References
[1] Daniel Lowd and Christopher Meek. Good Word attacks on statistical spam

filters. Conference on Email and Anti-Spam (CEAS), Vol. 2005, 2005.
[2] Qi Cheng, Anyi Xu, Xiangyang Li, and Lei Ding. Adversarial email generation

against spam detection models through feature perturbation. 2022 IEEE Interna-
tional Conference on Assured Autonomy (ICAA), IEEE, 2022.

[3] Chenran Wang, Danyi Zhang, Suye Huang, Xiangyang Li, and Leah Ding. Craft-
ing adversarial email content against machine learning based spam email detec-
tion. In Proceedings of the 2021 International Symposium on Advanced Security on
Software and Systems (ASSS ’21) with AsiaCCS 2021, Hong Kong, June 7, 2021.

[4] E.G. Dada, J.S. Bassi, H. Chiroma, S.M. Abdulhamid, A.O. Adetunmbi, O.E.
Ajibuwa. Machine learning for email spam filtering: Review, approaches and
open research problems. Heliyon, 5(6), e01802 (2019). https://doi.org/10.1016/j.
heliyon.2019.e01802.

[5] V. Christina, S. Karpagavalli, G. Suganya. Email spam filtering using supervised
machine learning techniques. International Journal of Computer Science and
Engineering, vol. 02, no. 09, pp. 3126–3129, 2010.

[6] Maxime Labonne and Sean Moran. Spam-t5: Benchmarking large language mod-
els for few-shot email spam detection. arXiv preprint arXiv:2304.01238, 2023.

[7] Gregory L. Wittel and Shyhtsun Felix Wu. On Attacking Statistical Spam Filters.
Conference on Email and Anti-Spam (CEAS), 2004.

[8] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks.
Stat, vol. 1050.9, 2017. arXiv preprint arXiv:1706.06083.

[9] SiavashShams. Natural language processing with GPT models. Github, Accessed:
Sep. 20th, 2024. [Online]. Available: https://github.com/SiavashShams/Spam_
detection_GPT2

[10] Xiangyang Li. Adversarial Attacks Against Machine Learning Based Spam Fil-
ters. Github, Accessed: Jan. 8th, 2024. [Online]. Available: https://github.com/
xyliatgithub/IntroInfoSec2024/tree/master/Lab4_New

https://doi.org/10.1016/j.heliyon.2019.e01802
https://doi.org/10.1016/j.heliyon.2019.e01802
https://github.com/SiavashShams/Spam_detection_GPT2
https://github.com/SiavashShams/Spam_detection_GPT2
https://github.com/xyliatgithub/IntroInfoSec2024/tree/master/Lab4_New
https://github.com/xyliatgithub/IntroInfoSec2024/tree/master/Lab4_New

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Objectives

	2 Related Work
	2.1 Spam Detection Using Machine Learning
	2.2 Spam Detection Using Large Language Model
	2.3 Adversarial Attacks on Spam Detection

	3 Methodology
	3.1 Large Language Model for Spam Detection
	3.2 Adversarial Attack Using "Magic Words" and "Magic Sentences"
	3.3 Cross-dataset "Data Poisoning" Attack

	4 Experimental Design
	4.1 Use of Datasets
	4.2 Use of Large Language Models
	4.3 Experimentation Environment

	5 Result Analysis
	5.1 Spam Detection Result
	5.2 Adversarial Attack Result
	5.3 Cross-dataset Poisoning Attack Result
	5.4 Additional Discussion

	6 Conclusion
	References

