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Numerous studies of human user behaviours in cybersecurity tasks have used traditional research methods, such as self-reported
surveys or empirical experiments, to identify relationships between various factors of interest and user security performance. This
work takes a different approach, applying computational cognitive modelling to research the decision-making of cybersecurity users.
The model described here relies on cognitive memory chunk activation to analytically simulate the decision-making process of a
user classifying legitimate and phishing emails. Suspicious-seeming cues in each email are processed by examining similar, past
classifications in long-term memory. We manipulate five parameters (Suspicion Threshold, Maximum Cues Processed, Weight of
Similarity, Flawed Perception Level, Legitimate-to-Phishing Email Ratio in long-term memory) to examine their effects on accuracy,
email processing time and decision confidence. Furthermore, we have conducted an empirical, unattended study of US participants
performing the same task. Analyses on the empirical study data and simulation output, especially clustering analysis, show that these
two research approaches complement each other for more insightful understanding of this phishing detection task. The analyses also
demonstrate several limitations of this computational model that cannot easily capture certain user types and phishing detection
strategies, calling for a more dynamic and sophisticated model construction.

RESEARCH HIGHLIGHTS

• Expansion of a previously described computational cognitive model represents the mental process of phishing email detection.
• Simulation results from this model are compared to those of an empirical study that tasked human users with identifying phishing emails.
• This comparison identifies findings in which the model’s behaviour aligns with anti-phishing best practices and empirical study results.
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1. INTRODUCTION
The modern digital society has heralded a growing need to
overcome persistent information security challenges, particularly
those facing human users. Social engineering and phishing
remain among the most serious dangers to all computer users
(Vergelis et al., 2019), with a significant portion of data breaches
and security incidents stemming from the theft of digital
credentials after email users click on a malicious phishing link
that appears legitimate (Verizon, 2021).

Researchers have sought to identify the various environmental
and user-specific factors contributing to such threats, utilizing
empirical experiments and self-reporting by both everyday users
and security experts. For example, several empirical studies iden-

tify user personality traits and informational cues in legitimate
and suspicious emails to quantify their impact on user perfor-
mance (Veksler and Buchler, 2016; Vishwanath et al., 2016; Moli-
naro and Bolton, 2018).

Computational cognitive modeling may reveal additional
insight into the mental challenge of identifying phishing emails.
This practice ‘imputes computational processes . . . onto cognitive
functions’, producing algorithmic and analytic descriptions of
specific psychological mechanisms that can be simulated through

a computational and accrual model (Sun, 2008). Such models
may be contrasted against ‘product theories’, which describe
the mental inputs and outputs that produce behaviors but
do not represent internal psychological processes. Cognitive
architectures, such as ACT-R and Soar (Anderson, 1996; Laird,
2012), provide frameworks on which specific cognitive models
may be developed. In addition to predicting potential issues
such as errors in decision-making or delays in reaching a task
goal, computational cognitive modeling sheds light into plausible
causes, based on emerging cognitive conditions, to provide
guidance toward an effective remedy.

This paper builds upon our team’s two recent efforts: a sim-
ulation study using computational cognitive modeling to exam-
ine cybersecurity decision-making (Shonman et al., 2018) and
a recent empirical, online study of users classifying emails as
legitimate or phishing (Zhang et al., 2018). The current work offers
two contributions to this ongoing investigation of user security
behaviour:

• We refine our original ACT-R-based cognitive model of phish-
ing detection (Shonman et al., 2018) by adding two model
parameters to the original three, which lend greater com-
plexity to our representations of both user perception of a
suspect email and a user’s past experience with phishing
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and legitimate emails. We have conducted new simulations
to observe this model’s behavior on a range of input values.

• We compare the simulation results with data from the pre-
vious empirical study to assess our model’s validity. Multiple
simulation results align with existing insights and best prac-
tices for phishing email identification, pointing to the utility
of this modeling method.

Below, we review the state of security behaviour studies with
an emphasis on phishing research. Details of the empirical study
and the cognitive model follow. We then describe the analysis of
results from these two efforts, concluding with a further discus-
sion. Additional information, including code and collected user
data, is available at http://behavior.isi.jhu.edu.

2. LITERATURE REVIEW
Veksler et al. (2018) explored potential uses of cognitive modelling
in cybersecurity contexts, such as comparing the effects of
training strategies on users and understanding the psychology
of attackers, defenders and users to facilitate security improve-
ments. Veksler and Buchler (2016) presented three simulations
demonstrating that techniques such as model tracing and
dynamic parameter adjustment allow computational cognitive
models, in the context of social security games, to outperform
normative game theory in understanding and responding to
cyberattackers.

The computational cognitive model described by Dutt et al.
(2013) strongly influenced our work. They use instance-based
learning theory to simulate the behaviour of a security analyst
in determining whether a series of network events constitutes
a cyberattack. The model represents situation information as a
series of attributes denoting details of a network event, including
the network location, alert, and operation result. Security analysts
classify individual events as threat or non-threat by examining
past similar experiences, stored as individual ‘chunks’ in memory.
Per the ACT-R architecture, chunks are scored based on similarity,
retrieval recency and other factors, and the chunk scored highest
is used to classify the event under consideration. For each event
sequence, a counter increments for each new event judged as a
threat. When the counter surpasses a set threshold, the entire
sequence is classified as a cyberattack.

Our model of email sorting extends and differs from this study
in several ways. As described in a previous report (Shonman et
al., 2018) and in Section 3.2, we adapt this work to describe step-
by-step (cue-by-cue) processing of a suspicious email, adding
additional parameters to introduce more complexity to each
email judgment.

Independently, Cranford et al. (2019) have also applied ACT-
R-based cognitive modelling to the study of phishing detection.
While both models judge a suspicious email by comparing it
to memories of previously encountered emails, the Cranford et
al. model makes comparisons based on semantic and textual
similarity, while our model uses a set of email elements such
as the presence of spelling/grammar errors, time pressure and
threatening language. In addition, their model uses an ACT-
R blending mechanism to calculate a ‘consensus value’ from
many similar memories, while ours retrieves the single memory
fragment judged most similar to the current cue.

3. METHODOLOGY
3.1. Phishing user study design and execution
The research team went through our university’s Institutional
Review Board approval protocol. One hundred seventy-seven

participants, all from the USA, were recruited through Amazon
Mechanical Turk and completed the study task in late 2017.
Appendix A contains additional study information.

3.1.1. User study design and execution
Participants functioned as a personal assistant directed to classify
40 emails into either a ‘keep’ or ‘suspicious’ (phishing) folder.
Emails appeared in a random order for each participant. After
classifying each email, participants were directed to rate their
confidence in that classification decision on a scale from 1 to 10.

Zhang et al. (2018) details the study’s various experimental
conditions (single-tasking vs multitasking and incentive vs no
incentive), which we will not discuss here. Our analysis focused
on the 77 participants in single-task conditions who sorted all 40
emails within the 30-minute time limit.

Participants viewed emails in the Roundcube webmail system
(https://roundcube.net) with a countdown timer displayed on the
screen (as in Fig. 1). Through several pilot studies that tested
the protocol and parameters, we judged that the time pressure
was sufficient to keep participants engaged during the full study
period and to help reduce potential bias introduced by having
informed them to look for phishing emails.

3.1.2. Phishing cue and email design
All 40 emails were created from real emails with personally identi-
fiable information modified. The 20 phishing emails were derived
from a semi-random sample of emails in Cornell University’s
‘Phish Bowl’ database (https://it.cornell.edu/phish-bowl). The
20 legitimate emails were derived from emails received by the
research team and consisted of promotions, notifications from
organizations (e.g. ‘Final Reminder for Warranty Activation’) and
requests for information. Two examples are shown in Appendix A.

We analysed 12 phishing cues defined in Molinaro and Bolton
(2018) that imply whether an email is legitimate or phishing,
such as whether the email threatened a negative consequence
for ignoring its directions. (The simulation uses the modified 13-
cue set in Table 1). Legitimate emails may contain individual
suspicious cues, such as misspellings or an absent greeting, while
phishing emails may contain non-suspicious cues and thus seem
legitimate. However, phishing emails on average contained more
suspicious cues than did legitimate emails, providing a path to
accurate classification. For example, Suspicious Sender Name
appeared in 12/20 phishing emails but only 4/20 legitimate emails,
and Lack of Sender Details was present in 15/20 phishing emails
but only 3/20 legitimate emails.

All emails were manually coded by the research team to iden-
tify the cues present.

3.1.3. Data collection and performance measures
Self-reported demographics considered in our analysis included
age, education level and experience with network or cybersecu-
rity courses/certificates. We also utilized participants’ self-rated
confidence in each email classification decision (1: no confidence,
to 10: extremely confident).

Each participant generated a log file in which every event
record included timestamps; the operation taken, such as clicking
a button or hovering over a web link; and additional informa-
tion relevant to the operation. Six performance measures were
extracted for each participant:

i) False-negative rate [FNR]: error rate for phishing email classi-
fications (range [0–1]);

ii) False-positive rate [FPR]: error rate for legitimate email classi-
fications (range [0–1]);
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Figure 1. No-multitasking condition where a participant classifies emails.

Table 1. Phishing cue definitions (Shonman et al., 2018)

Cue type Cue definition

No Branding/Logos Does the email lack company branding and/or logos?
Overall Design Does the overall email quality appear poor?
Suspicious Sender Name Does the sender display name appear suspicious?
Subject Does the subject line direct the receiver to take an action?
Lack of Sender Details Does the email provide sender information beyond a name?
Generic Greeting Is the email greeting absent/not addressed to the individual?
URL Hyperlink (possibly multiple cues per email) Scored according to presence or absence of two attributes:

• Does the URL text suggest a webpage different from the true link?
• Does the URL website match the email sender?

Spelling/Grammar Does the text contain any spelling/grammar mistakes?
Time Pressure Does the email request include a deadline?
Threatening Language Does the email threaten a negative consequence if instructions unfollowed?
Emotional Appeal Does the email elicit a sympathetic or otherwise emotional response?
Too Good to be True Does the email present a too-good-to-be-true offer?
Personal Information Does the email request personal information?

iii) Total processing time for all legitimate emails (range ∼0–900
seconds);

iv) Total processing time for all phishing emails (range ∼0–900 sec-
onds);

v) Average confidence rating for legitimate email classifications
(range [0–10]);

vi) Average confidence rating for phishing email classifications (range
[0–10]);

Measure (v) was averaged across the 20 legitimate emails, with
measure (vi) averaged across phishing emails.

3.2. Phishing detection model and simulation
3.2.1. Model design
Our model (Fig. 2) represents the cognitive process of an indi-
vidual determining whether a series of emails are phishing or
legitimate, drawing upon the single-task scenario in the empirical
phishing study. In the model, the ‘user’ classifies an email by
evaluating the email’s individual cues as ‘threat’ or ‘non-threat’.
Each cue is classified by comparison to individual ‘chunks’ in
the user’s simulated long-term memory (the mode of memory
that retains information indefinitely, as opposed to short-term
memory that holds ‘active’ information for <1 minute). Chunks

represent previously encountered cues for which the email nature
(phishing/legitimate) is known.

3.2.2. Model parameters
This study investigated how changes in experimental parameters
influence the model’s phishing classification performance. The
model used five parameters. Parameters (i)–(iii) were examined in
the previous simulation report (Shonman et al., 2018). Parameters
(iv) and (v) are new to this study.

i) Suspicion Threshold: This term denotes the number of sus-
picious cues classified before the user marks an email as
phishing. Values were whole numbers from 2 to 6, always
less than the Maximum Cues Processed parameter value.

ii) Maximum Cues Processed: If the suspicion threshold is not
crossed, this term denotes the highest number of cues per
email that a user evaluates before making a decision. Values
were whole numbers from 7 to 12. The lower bound ensured
that at least one cue beyond the first six (fixed-ordered) cues
would be classified; the upper bound was selected because
one email only had 12 cues.

iii) Weight of Similarity: This parameter corresponds to Pl in
Equation 3 (Section 3.2.5), which weights the similarity term
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Start of the simulation
For each of 100 users
    Populate the long-term memory with all the cue chunks derived from the 40 emails according to Legitimate-Phishing (L-P) Ratio(a); 
    For each email of the 40 emails randomly ordered
        Reset Number of Processed Cues to 0;
        Reset Suspicion Level to 0;
        For every cue in the email processed either in linear order or simultaneously according to the cue type (b)

            If Number of Processed Cues <= Maximum Cues Processed AND Suspicion Level < Suspicion Threshold
Update the activation values of all the related cue chunks in long-term memory (c);

                If the utility of the cue chunk being retrieved with the highest activation value is 1
                    Increase the Suspicion Level by 1.
                Endif
            Endif
        End
        If the Suspicion Level = Suspicion Threshold
            This email is classified as phishing.
        else
            This email is classified as normal.

Endif
End

End
End of the simulation

Figure 2. A computational model based on cognitive chunk activation revising and instance-based learning (a: see 3.2.3 Cue Chunks in Long-term
Memory; b: see 3.2.4 Cue Processing and Email Classification; c: see 3.2.5 Cognitive Chunk Activation).

used in the memory chunk activation equation (Equation 1).
Values were whole numbers from 1 to 7. This variation
allowed us to examine the similarity term’s interaction with
the base-level learning and noise terms. In comparing a
chunk in memory to the cue currently under consideration,
greater weights translate to a higher value of the similarity
term within the activation equation.

iv) Flawed Perception Level: This value determines the probability
that the ‘user’ correctly classifies any information cue in the
current email being processed. Higher values raise the like-
lihood that the user will code the information cue wrongly.
The term varied from 0.0 to 0.5, incrementing by 0.1.

v) Legitimate-to-Phishing Email Ratio [L-P Ratio] in long-term memory:
This value represents the experience of previously seen
legitimate and phishing emails for a user. The term started
with 20 legitimate and 20 phishing emails (1:1). Since this
ratio for real-world emails is estimated at roughly 3000:1
(Symantec, 2018), we input the ratios 10:1, 100:1, 3000:1 and
5000:1 to observe the parameter’s potential influence.

3.2.3. Cue chunks in long-term memory
The simulated long-term memory was populated with chunks
derived from the 40 empirical study emails (note that each email
contained 0–13 hyperlinks, all encoded as distinct chunks). In this
way, these emails are the source of cue chunks, i.e. past knowledge
facts, that are associated with legitimate and phishing emails.
Considering that legitimate emails outnumber phishing emails in
real-world experiences, we duplicated the cue chunks associated
with the 20 legitimate emails multiple times for different L-P Ratio
settings.

Chunks in long-term memory contain the following compo-
nents:

• Cue type: One of the 13 different cue categories (Table 1).
• Attribute score(s): Each is 0 if the question is answered ‘No’,

and 1 otherwise (Table 1).
• Utility: Value is 0 if the email associated with this past cue

was normal; 1 for phishing.

At the beginning of each simulation run, all long-term memory
chunks were entered simultaneously.

3.2.4. Cue processing and email classification
The model processes an email one cue at a time. During the
classification of a cue, every cue chunk of that same cue type
in the long-term memory receives an updated ‘activation’ score
according to a formula described below in 3.2.5. If the cue chunk
with the highest score belonged to a phishing email, the current
cue is classified as ‘threat’. The model maintains a counter start-
ing at zero for every email, which increments by one for each
cue judged as threat. An email is classified as phishing when the
number of cues so judged passes the Suspicion Threshold level.

Not all cues in each email were processed. The model fea-
tured one parameter determining the maximum number of cues
that can be classified per email, separate from the Suspicion
Threshold. When this number is reached, the email is classified
as normal if the Suspicion Threshold has not been crossed.

Information cues were visited in a manner combining fixed
steps and random elements. Expert input and a pilot study sug-
gested that email readers tend to view the following elements in
sequence: limited text visuals, sender, subject, greeting and ‘story’
text. As a result, the model visits the six cues analogous to these
elements (the first six cues in Table 1) in a linear order. Because
no inherent order emerges for the remaining seven cues, their
order is not fixed, and the model treats these cues as processed
simultaneously by the user. All memory chunks corresponding to
these seven cue types are likewise pooled together; the memory
chunk being activated determines which cue is processed next.

Flawed Perception Level sets the probability that the simulated
user flips the attribute score of a cue upon reading it (equivalent
to misinterpreting a suspicious cue as benign or vice versa).

3.2.5. Cognitive chunk activation
In the ACT-R cognitive architecture, declarative knowledge (i.e.
facts and events) is stored as discrete ‘chunks’ in long-term mem-
ory (Anderson, 1996). Information chunks relevant to a present
situation are selected according to an activation value calculation,
simplified in Dutt et al. (2013) as:

Ai = Bi + Simi + εi (1)

Bi represents a base-level activation, combining the recency
and frequency of a chunk’s prior retrievals. Simi denotes the

D
ow

nloaded from
 https://academ

ic.oup.com
/iw

c/advance-article/doi/10.1093/iw
c/iw

ad054/7601603 by guest on 13 February 2024



Matthew Shonman et al. | 5

association or similarity between a chunk and the current infor-
mation cue. εi is a random noise term to model imperfection in
human cognition. This activation process forms a core component
of our own model.

With equations drawn from Dutt et al. (2013) for the ith mem-
ory chunk:

Bi = ln

⎛
⎝ ∑

ti∈{1,...,t−1}
(t − ti)

−d

⎞
⎠ (2)

{1, . . . ,t—1} represents the set of past activation times for the
given chunk. (t—ti) represents the lapse between current time t
and a given past activation time ti. Decay term d has a default
value of 0.5. Our study used relative time, omitting duration units.

Simi =
∑k

l=1
Pl ∗ Mli (3)

Pl is a weight term that we varied as one model parameter (i.e.
Section 3.2.2). Mli represents the raw similarity score comparing
the lth information attribute with the present situation. Mli was
scored as 0 if the lth attribute value in a memory chunk matched
that of the current cue under consideration, or −1 if the two values
were unequal.

εi = s ∗ ln
(

1 − ηi

ηi

)
(4)

ηi is drawn from a uniform random distribution between 0 and
1 exclusive. Weight s has a default value of 0.25. Ninety percent of
εi values lie between ±0.736.

3.2.6. Simulation output
The simulation was run 100 times for each combination of param-
eter settings. Corresponding to the performance measures from
the empirical study (Section 3.1.3), we defined six performance
measures based on the simulation output:

• False-negative rate [FNR]: equals # false negatives [FN] / (#
FN + # true positives);

• False-positive rate [FPR]: equals # false positives [FP] / (# FP + #
true negatives);

• Average processing time, negative [TN]: average time spent
assessing a legitimate email, measured as the number of
cues processed;

• Average processing time, positive [TP]: average time spent
assessing a phishing email, measured as the number of cues
processed;

• Confidence rating, negative [CRN]: equals 1—(suspicion_counter
of a legitimate email) / (number of cues_checked);

• Confidence rating, positive [CRP]: equals 1—(suspicion_counter
of a phishing email) / (number of cues_checked).

Note that a higher CRN or CRP means a higher confidence. We
conjecture that simulated users who check more cues will make
a more informed decision, translating to a greater confidence
rating. As with the empirical study metrics, CRN and CRP were
distinguished based on the true classification of each email.

4. RESULTS
4.1. Clustering analysis of empirical data
Our initial significance tests (Zhang et al. (2018)) failed to clearly
characterize the participants. This suggests that the subpopula-
tions we sought did not prominently vary along individual per-
formance measures. Therefore, we utilized k-means clustering to
examine their interactions by simultaneously considering all six
empirical study performance measures (as in Section 3.1.3). We

normalized the minimum and maximum bounds of all perfor-
mance measures to 0 and 1. After experimenting with a set of
different k values from two to eight, grouping the users into three
clusters yielded the highest score on the Calinski–Harabasz Index.
These three subpopulations include:

• An ‘overachiever’ cluster with strong overall performance
(n = 34);

• A ‘conservative’ cluster featuring lower FNR and higher
FPR (more accurate at identifying phishing than legitimate
emails) (n = 16);

• A ‘naive’ cluster featuring lower FPR and higher FNR (more
accurate at identifying legitimate than phishing emails)
(n = 27).

Figure 3 shows the clustering results as a set of 2D scatter plots.
In Fig. 3a, displaying FNR and FPR, a numeric label denotes the
number of overlapping points, i.e. participants with the same FNR
and FPR values. Figure 3b compares processing times for phishing
and legitimate emails, also fitting linear regression lines on each
cluster. Figure 3c shows participants’ average decision confidence
ratings for phishing and legitimate emails. Finally, Fig. 3d shows
participants’ age, education level and cybersecurity training along
with their cluster.

As shown in Fig. 3a, naive-cluster participants demonstrated
comparatively high FNR, signifying less success in detecting
phishing emails. Not coincidentally, as per Fig. 3b, these partici-
pants also spent more time classifying phishing emails than legit-
imate ones. Similarly, conservative-cluster participants exhibited
relatively high FPR: they experienced more difficulty classifying
legitimate emails despite spending more time on these emails.

The overachiever cluster mostly includes participants with
both low FNR and FPR. These participants also reported the high-
est confidence level among the three clusters. The corresponding
linear regression line in Fig. 3b indicates that these participants
showed an overall slight tendency to spend less time on phishing
emails. One potential explanation is that they had to examine a
legitimate email more thoroughly, for example, by checking more
phishing cues, before confidently moving it to the ‘keep’ folder.
However, they only needed to find ‘enough’ suspicious evidence
to correctly classify a phishing email. This seems to support a
similar strategy used in the simulation study of single-task users
as reported in Shonman et al. (2018).

Intuitively, higher confidence ratings would be associated
with better task performance. As shown in Fig. 3c, confidence
ratings of different clusters generally reflected their relative
success at detecting phishing, legitimate or both types of
emails. However, points from different clusters are interspersed:
some conservative-cluster participants were less confident on
legitimate emails, and some naive-cluster participants expressed
higher confidence on phishing emails (similarly, Fig. 3b also
features overlap between clusters on email processing time).
These observations, consistent with findings in our previous
reports, highlight the difficulty of relying on just one or two
performance criteria to characterize security behaviours and the
necessity of a comprehensive approach such as clustering.

Figure 3d highlights the potential influence of cybersecurity
training experience and advanced education on phishing classi-
fication. All participants with cybersecurity training, across all
education levels, lie in the overachiever cluster, as do all but one
individual possessing master’s or doctoral degrees. No partici-
pants older than 45 possessed a graduate degree or had cyber-
security training, and only one individual in that age group is
in the overachiever cluster. These observations seem to support
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Figure 3. Clustering of participants in the no-multitasking condition where performance measures were normalized into three user types. Education
levels in subplot d were coded as follows: 1: No High School Diploma; 2: High School; 3: Some College; 4: Two-Year Associate; 5: Four-Year Bachelor; 6:
Master’s Degree; 7: Doctorate Degree.

previous research, including Gavett et al. (2017), holding that
academic study or training can effectively improve a person’s
security behaviour. Given the findings of Gavett et al. and Lin et al.
(2019) that aging did not show direct impacts on phishing success,
we conclude that the over-45 population’s performance is likely
better explained by their lack of training and advanced education
rather than directly by their age. However, additional research,
with a study population including older participants who possess
greater training and education, may further clarify the roles of
these factors.

4.2. General analysis of simulation data
Combinations of the five parameter values resulted in >4000
simulation runs. As one example, Fig. 4 shows simulation results
when the three ‘original’ parameters (Suspicion Threshold, Max-
imum Cues Processed and Weight of Similarity) are fixed at their
lowest possible values, while the two novel parameters (Flawed
Perception Level and Legitimate-Phishing Ratio) are allowed to
vary. With fewer total cues processed and a low Suspicion Thresh-
old, a large gap between FNR and FPR is evident: the simulated
user detects a high number of phishing emails but generates
many false positives. This shows the challenge to a user who does

not utilize enough information cues in phishing detection. TN and
TP appear to increase as L-P Ratio grows. However, spending more
time on emails (higher TN and TP) does not seem to improve
detection accuracy (FNR and FPR). These results appear to echo
those from the empirical study.

Similar to the example in Fig. 4, we fixed the three original
parameters in multiple combinations of their highest and lowest
settings to observe the impact of the two novel parameters on
the output metrics. Ultimately, few useful trends were identified
when analysing these performance measures individually, leading
us to pursue clustering analysis on the data.

4.3. Clustering analysis of simulation data
To obtain insights into the model’s efficacy, similar clustering
analysis methods as used on the empirical study data were
applied to the simulation results. Specifically, for every L-P Ratio
setting, different settings for the other four parameters, i.e. 1260
(7 × 6 × 5 × 6) combinations, represent various user types. The
k-means clustering analysis used all six performance measures
(as in Section 3.2.6), each normalized on a [0–1] scale, to identify
distinct user groups.

This analysis pursued two goals. First, we questioned whether
our model could accurately represent the types of users apparent
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Figure 4. Performance measures when Suspicion Threshold (=2), Maximum Cues Processed (=7) and Weight of Similarity (=1) are all low.

from the empirical study. We therefore ‘hunted’ for user
categories corresponding to the three clusters identified in the
empirical study data. Second, we hoped that analysing the
parameter settings associated with individual clusters would help
identify the factors related to these users’ unique performance
characteristics. This is similar to the demographic analysis in the
empirical study.

One notable difference emerged when comparing the cluster-
ing analyses of simulation and empirical results. Each instance
in the simulation represents a distinct combination of model
parameter values, corresponding to one ‘type’ of user. These
parameter values are varied continuously across given ranges.
However, each instance in the empirical study corresponds to a
single real individual, many of whom may exhibit similar traits
that do not vary continuously across a spectrum. As a result, a cer-
tain empirical user type may correspond to multiple individuals in
data, resulting in more apparent patterns represented by clusters.
Clusters may be dense with specific user types, with sparse or no
instances of other types in between.

4.3.1. Three clusters
Figure 5 shows the results for k = 3, the same number of clusters
identified in the empirical study results, for simulations with an
L-P Ratio of 3000:1.

Figure 5a displays the sorting accuracy (FNR and FPR) of the
simulation results. Clustering analysis on these data produces

less distinct clusters than those from the empirical data. Specifi-
cally, simulated overachiever-cluster users do not exhibit a signif-
icantly stronger performance in either FNR or FPR, compared to
real users from this cluster in the empirical study.

Figure 5b highlights email processing time. Unlike the empir-
ical results, the simulation data demonstrate clear differences
between clusters for this metric; average time is longest for the
overachiever cluster and shortest for the conservative cluster.
According to the respective linear regression lines, all simulated
users generally spend more time on legitimate emails than on
phishing emails. This is reasonable given that they must examine

a legitimate email more thoroughly, for example, by traversing
more cues, before asserting the email to be legitimate. However,
correctly classifying a phishing email only requires that enough
suspicious cues are found to cross the suspicion threshold level,
so simulated users understandably take less time to identify such
emails.

As in Fig. 5c, simulated overachiever-cluster users possess
the highest confidence scores, then naive-cluster users, with

the lowest scores among conservative-cluster users. Compared

to conservative-cluster users, naive-cluster users examine more

information cues and exhibit higher confidence scores while still

tending to misclassify more phishing emails as legitimate. This
behaviour suggests that greater confidence does not necessarily
indicate more accurate classification decisions in the model,
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Figure 5. Clustering of simulation results using three clusters (L-P Ratio = 3000:1).

potentially due to simulated users simply lacking appropriate
evidence to judge certain emails. By contrast, confidence ratings
in the empirical study data show less distinction between the
three clusters, as in Fig. 3c.

Figure 5d presents box plots to summarize the model param-
eter settings within each cluster and highlight relevant trends.
Users in the overachiever cluster tend to have the highest upper
bounds on the number of cues examined, corresponding to the
fact that these users spend more time on emails and show higher
confidence in their classifications. Overachiever-cluster users
also exhibit higher Suspicion Thresholds, followed by naive-
cluster users. A higher Suspicion Threshold allows more cues
to be examined before an email is classified, decreasing the
risk that a few suspicious cues encountered initially will skew
the classification decision. Flawed Perception Level lacks an
obvious distinction among the three clusters. However, comparing
the median and mean values, conservative-cluster users skew
toward a higher value, with the other clusters skewing the
opposite.

It seems that overachiever and naive clusters are closely inter-
twined in several plots in this three-cluster analysis. This sug-
gests that real users who can accurately distinguish phishing
from legitimate emails may employ more sophisticated phish-
ing detection strategies. While the model examines each cue in
isolation, a real person reading an email presumably correlates
multiple email elements—poor spelling in an unsolicited email
might make the recipient more suspicious of a request for per-
sonal information. Moreover, real-life ‘email suspicion level’ is
presumably more dynamic than our model’s version, with the
ability to decrease as well as rise.

Clustering analysis results for other L-P Ratios are very similar.
This may imply that past exposure to phishing emails does not
better empower users, as compared to alternate strategies such
as managing one’s Suspicion Threshold and examining more
information cues.

4.3.2. Two clusters
The initial analysis of the simulation results used three clus-
ters for purpose of comparison to the empirical study data. As
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Figure 6. Clustering of simulation results into two clusters (L-P Ratio = 3000:1).

noted above, this was not necessarily the best fit for the sim-
ulation data, as two of the clusters (overachiever and naive)
overlapped for some metrics. For an alternative analysis of the
simulation, here we discuss the results of a two-cluster analysis
(Fig. 6) (on a relevant note, the two-cluster analysis of the empir-
ical data yielded the second highest Calinski-Harabasz Index
score.)

Overall, clustering with k = 2 yields largely similar results
compared to k = 3. Most of the ‘overachiever’ and ‘naive’ pop-
ulations seem to merge into a new ‘non-conservative’ cluster,
with the existing conservative cluster mostly unchanged. How-
ever, the division between the conservative and non-conservative
clusters is less clear than for k = 3. For example, in Fig. 6a, several
conservative-cluster ‘users’ lie in the centre of the new naive
cluster, with FNR and FPR both ∼0.5.

In Fig. 6d, both clusters are equally represented for varying
values of Weight of Similarity and Flawed Perception Level. The
Suspicion Threshold demonstrates a more obvious distinction
between the two clusters: the non-conservative cluster has a
higher suspicion leniency, while the Suspicion Threshold of the
conservative cluster is drastically smaller, corresponding to their
greater likelihood of classifying an email as phishing.

5. DISCUSSION
5.1. Interpretations and suggestions
Insights from this simulation study align with successful real-
world phishing identification strategies, point to further avenues
for improving the model and highlight ways in which specific
combinations of input parameters can produce simulation runs
aligning to salient characteristics of user populations from the
empirical study.

Two observations from the simulation align with the standard
recommendation that real users thoroughly examine all emails to
detect phishing indicators (per Parsons et al. (2019), Vishwanath
et al. (2016), etc).

• Simulated overachiever-cluster ‘users’, the best-performing
group, featured significantly higher settings for the Maximum
Cues Processed parameter than did simulated users in the
other two clusters. In other words, this group’s greater suc-
cess rate was associated with being most likely to inspect
many aspects of an email for suspicious evidence.

• Simulated users from all groups tended to spend more time
judging legitimate emails than phishing emails (Fig. 5b and
Fig. 6b). To identify a phishing email, users need only spot
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a few suspicious cues; however, they must traverse almost
all cues to verify an email as legitimate. This behaviour is
largely consistent with the empirical study results, for which
the majority of participants (two out of three clusters) also
spent more time on legitimate emails (Fig. 3b).

In addition, comparing simulation output to the empirical
study results suggests that certain model parameter settings
correspond to elements of real users’ demographic background.
For example, cybersecurity training and education are strong
predictors of user performance, as shown in the empirical study.
In the simulation, higher values for the Maximum Cues Processed
and Suspicion Threshold parameters, which can represent greater
education, positively correlate with user performance (as in Fig. 5).
A higher Flawed Perception Level in the simulation could poten-
tially represent increased age, or a combination of age and lack
of cybersecurity training. As previously stated, these factors were
difficult to separate in the empirical study; more research would
illuminate which demographic factors can be associated with this
parameter.

5.2. Limitations and future work
Although the simulation model showcases the overall trends of
the three identified user types, there still exist discrepancies
between simulated users and real users. Most notably, simu-
lated ‘overachievers’ perform more poorly than real overachiever-
cluster participants. Additionally, the average Suspicion Thresh-
old of simulated overachievers is higher than that of simulated
naive users, even though the latter group, with its tendency to
classify an inordinately high proportion of all emails as legitimate,
should intuitively exhibit the highest values for this parameter.

As noted in Section 4.3, an inherent distinction between the
empirical and simulation data is that the empirical results are
not evenly distributed across the range of potential user ‘types’.
For example, multiple individuals might come from similar
educational backgrounds, be of similar ages and exhibit similar
performance on the study task. By contrast, instances in the
model are evenly spread across the full spectrum of parameter
combinations. This distinction made direct quantitative compar-
isons between the two datasets inherently difficult, leading us to
pursue qualitative comparisons in this paper. Future research
might look for the subset of simulation values that match
observed ‘types’ of empirical study participants, thus permitting
accurate quantitative analyses between the two datasets. For
example, Farrell and Lewandowsky (2018) discussed several
statistical measures for model comparison and fitting models
to observed data, including Akaike’s Information Criterion, min-
imum description length and normalized maximum likelihood,
which might facilitate such analysis.

More research efforts are also warranted to understand
the changes in phishing tactics and consequent shifts in user
behaviour that have occurred since the 2017 empirical study.

Three additional limitations of the simulation are highlighted
below.

First, real users may use a wider range of strategies, in addition
to cue identification, to spot phishing emails. For example, an
individual might consider personal connections with the email
content (i.e. a poorly formatted email may still be trusted if
received from a known source). Additionally, a real user pre-
sumably observes and evaluates multiple cues at the same time
and approaches ‘suspicion management’ in a dynamic process
rather than monotonic incrementation. These strategies are not
included in the cognitive model described here.

Second, this simulation fixes model parameters for a user.
Maximum Cues Processed and Suspicion Threshold are prede-
fined and identical for every email. However, for example, real-life
‘Suspicion Threshold’ changes dynamically according to users’
reaction to email content, appearance or situational urgency.
Additional research could explore the intriguing question of how
and when humans adjust their mental equivalents to the model’s
parameters in response to such factors.

Last, the current simulation tests users on only 20 legitimate
and 20 phishing emails. One has to note that the same 40 emails
are also used in long-term memory construction. The lack of a
‘training’ step in modelling and the similarity between training
and testing data might sway the simulation results. Future work
should utilize more representative email datasets.

6. CONCLUSION
Effectively combatting phishing threats will require further
understanding of the boundaries and limitations of human
cognition and security-related decision-making. Computational
cognitive modelling offers a promising approach to complement
empirical user studies and tackle emerging hard problems in this
field. This study set to identify how closely the initial model could
reinforce existing real-world phishing detection strategies and the
extent to which user subgroups observed in the empirical study
could be replicated using parameter settings in the simulation.
Future work can build upon these modelling strategies, utilizing
more dynamic and sophisticated mechanisms to fully represent
and capture the mental complexities that result as humans
attempt to identify phishing threats.

Acknowledgements
We would like to thank Nathan Bos and Kylie Molinaro from
Johns Hopkins University Applied Physics Laboratory for their
help with the user study and data analysis. The views expressed
in this work are the authors’ own and do not reflect the view of
the Cybersecurity and Infrastructure Security Agency, the United
States Department of Homeland Security or the United States
government.
This paper is an expanded version of the authors’ publication

Shonman et al. (2022), which is licensed under a Creative Com-
mons Attribution 4.0 Unported License (http://creativecommons.
org/licenses/by/4.0/).

Funding
This work is supported under the National Science Foundation
Award No. 1544493 and Award No. 120593.

References
Anderson, J. R. (1996) ACT: a simple theory of complex cognition. Am.

Psychol., 51, 355–365. https://doi.org/10.1037/0003-066X.51.4.355.
Cranford, E. A., Lebiere, C., Rajivan, P., Aggarwal, P. and Gonzalez,

C. (2019) Modeling Cognitive Dynamics in End-User Response to
Phishing Emails. In Stewart, T. C. (ed), Proceedings of the 17th Annual
Meeting of the International Conference on Cognitive Modelling, pp.
35–40. University of Waterloo, Waterloo, Canada.

Dutt, V., Ahn, Y. and Gonzalez, C. (2013) Cyber situation aware-
ness: modeling detection of cyber attacks with instance-
based learning theory. Hum. Factors, 55, 605–618. https://doi.
org/10.1177/0018720812464045.

Farrell, S. and Lewandowsky, S. (2018) Model Comparison. Computa-
tional Modeling of Cognition and Behavior (pp. 241–272). Cambridge

D
ow

nloaded from
 https://academ

ic.oup.com
/iw

c/advance-article/doi/10.1093/iw
c/iw

ad054/7601603 by guest on 13 February 2024

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1037/0003-066X.51.4.355
https://doi.org/10.1037/0003-066X.51.4.355
https://doi.org/10.1037/0003-066X.51.4.355
https://doi.org/10.1037/0003-066X.51.4.355
https://doi.org/10.1177/0018720812464045
https://doi.org/10.1177/0018720812464045
https://doi.org/10.1177/0018720812464045


Matthew Shonman et al. | 11

University Press, Cambridge, England. https://doi.org/10.1017/
CBO9781316272503.011

Gavett, B. E., Zhao, R., John, S. E., Bussell, C. A., Roberts, J. R. and Yue,
C. (2017) Phishing suspiciousness in older and younger adults:
the role of executive functioning. PLoS One, 12, 2. https://doi.
org/10.1371/journal.pone.0171620.

Laird, J.E. (2012) The Soar Cognitive Architecture. The MIT Press, Cam-
bridge, MA, https://doi.org/10.7551/mitpress/7688.001.0001.

Lin, T., Capecci, D. E., Ellis, D. M., Rocha, H. A., Dommaraju, S., Oliveira,
D. S. and Ebner, N. C. (2019) Susceptibility to spear-phishing
emails: effects of internet user demographics and email content.
ACM Transactions on Computer-Human Interaction, 26, 1–28. https://
doi.org/10.1145/3336141.

Molinaro, K. A. and Bolton, M. L. (2018) Evaluating the applicability
of the double system lens model to the analysis of phishing
email judgments. Computers & Security, 77, 128–137. https://doi.
org/10.1016/j.cose.2018.03.012.

Parsons, K., Butavicius, M., Delfabbro, P. and Lillie, M. (2019) Predict-
ing susceptibility to social influence in phishing emails. Interna-
tional Journal of Human-Computer Studies, 128, 17–26. https://doi.
org/10.1177/0018720816665025.

Shonman, M., Li, X., Zhang, H. and Dahbura, A. (2018) Simulat-
ing phishing email processing with instance-based learning and
cognitive chunk activation. Brain informatics (BI 2018) (Decem-
ber 2018). Lect. Notes Comput. Sci, 11309, 468–478. https://doi.
org/10.1007/978-3-030-05587-5_44.

Shonman, M., Shi, X., Kang, M., Wang, Z., Li, X. and Dahbura, A.
(2022) Using a Computational Cognitive Model to Understand
Phishing Classification Decisions. Proceedings of the 35th Interna-
tional BCS Human Computer Interaction Conference, pp. 1–10. BCS
Learning and Development Ltd., Swindon, England. https://dx.
doi.org/10.14236/ewic/HCI2022.24

Sun, R. (2008) Introduction to Computational Cognitive Model-
ing. In Sun, R. (ed), The Cambridge Handbook of Computational
Psychology, pp. 3–19. Cambridge University Press, Cambridge,
England.

Symantec (2018) Internet security threat report, vol. 23. Syman-
tec Corporation. symantec.com/content/dam/symantec/docs/
reports/istr-23-2018-en.pdf (retrieved 1 March 2022).

Veksler, V. D. and Buchler, N. (2016) Know Your Enemy: Applying Cog-
nitive Modeling in Security Domain. In Papafragou, A., Grodner,
D., Mirman, D. and Trueswell, J. (eds), Proceedings of the 38th Annual
Conference of the Cognitive Science Society, pp. 2405–2410. Cognitive
Science Society, Austin, TX.

Veksler, V. D., Buchler, N., Hoffman, B. E., Cassenti, D. N., Sample, C.
and Sugrim, S. (2018) Simulations in cyber-security: a review of
cognitive modeling of network attackers, defenders, and
users. Front. Psychol., 9, Article 691. https://doi.org/10.3389/
fpsyg.2018.00691.

Vergelis, M., Shcherbakova, T., and Sidorina, T. (2019) Spam and
phishing in Q1. Securelist. https://securelist.com/spam-and-
phishing-in-q1-2019/90795 (retrieved 1 March 2022).

Verizon (2021) 2021 Data breach investigations report. https://
www.verizon.com/business/resources/reports/2021/2021-data-
breach-investigations-report.pdf (retrieved 20 March 2022).

Vishwanath, A., Harrison, B. and Ng, Y. J. (2016) Suspicion, cognition,
and automaticity model of phishing susceptibility. Commun. Res.,
45, 1146–1166. https://doi.org/10.1177/0093650215627483.

Zhang, H., Singh, S., Li, X., Dahbura, A., and Xie, M. (2018) Multitasking
and Monetary Incentive in a Realistic Phishing Study. In Bond,
R., Mulvenna, M. and Black, M. (eds), Proceedings of the 32nd
International BCS Human Computer Interaction Conference (HCI). BCS
Learning and Development Ltd., Swindon, England. https://doi.
org/10.14236/ewic/HCI2018.115

APPENDICES

EMAIL SORTING TASK
Participants in this user study were instructed that they were
an administrative assistant working for the department chair, Dr.
Jane Smith, who asked them to sort through her emails while
she was on vacation. Participants were told that the chair uses
her email for many different accounts, both work and personal.
Participants did not need to respond to any of the emails, only
sort them into either a ‘keep’ or ‘suspicious’ folder. Participants
were asked not to use the internet or other sources to look up
anything about the emails, ensuring that they would judge emails
only based on the information within the email and email client.

Participants had a time limit to sort the 40 emails. Twenty
emails were legitimate and the other 20 were phishing, although
participants were not made aware of this distribution. All phishing
emails utilized link-based attacks.

EMAIL EXAMPLES
Figure 7 shows a sample phishing email. The receiver was modi-
fied to be Jane Smith.

Figure 8 shows a sample legitimate email. The sender and
receiver were modified appropriately. In this example, the sender
display name is ‘Dropbox’ with the sender email address of ‘no-
reply@dropbox.com’. The receiver was modified to be Jane Smith.

EMAIL CUE CODING
Table A1 presents the full set of cues present in each of the 40
emails. A ‘1’ signifies that the cue in a given column was present
in the email in a given row. In the ‘Legitimate/Phishing’ column, an
‘L’ denotes a legitimate email, with ‘P’ denoting a phishing email.
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Figure 7. Example phishing email provided to participants. Figure 8. Example legitimate email provided to participants.
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