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Numerous studies of human user behaviours in cybersecurity tasks have used traditional research 
methods, such as self-reported surveys or empirical experiments, to identify relationships between 
various factors of interest and user security performance. This work takes a different approach, 
applying computational cognitive modelling to research the decision-making of cybersecurity users. 
The model described here relies on cognitive memory chunk activation to analytically simulate the 
decision-making process of a user classifying legitimate and phishing emails. Suspicious-seeming 
cues in each email are processed by examining similar, past classifications in long-term memory. 
We manipulate five parameters (Suspicion Threshold; Maximum Cues Processed; Weight of 
Similarity; Flawed Perception Level; Legitimate-to-Phishing Email Ratio in long-term memory) to 
examine their effects on accuracy, email processing time and decision confidence. Furthermore, we 
have conducted an empirical, unattended study of US participants performing the same task. 
Analyses on the empirical study data and simulation output, especially clustering analysis, show 
that these two research approaches complement each other for more insightful understanding of 
this phishing detection task. The analyses also demonstrate several limitations of this computational 
model that cannot easily capture certain user types and phishing detection strategies, calling for a 
more dynamic and sophisticated model construction. 
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1. INTRODUCTION 

The modern digital society has heralded a growing 
need to overcome persistent information security 
challenges, particularly those facing human users. 
Social engineering and phishing remain among the 
most serious dangers to all computer users (Vergelis 
et al. 2019), with a significant portion of data 
breaches and security incidents stemming from the 
theft of digital credentials after email users click on 
a malicious phishing link that appears legitimate 
(Verizon 2021). 
Researchers have sought to identify the various 
environmental and user-specific factors contributing 
to such threats, utilizing empirical experiments and 
self-reporting by both everyday users and security 
experts. For example, several empirical studies 
identify user personality traits and informational 
cues in legitimate and suspicious emails to quantify 
their impact on user performance (Molinaro and 
Bolton 2018; Veksler and Buchler 2016; Vishwanath 
et al. 2016). 

Computational cognitive modeling may reveal 
additional insight into the mental challenge of 
identifying phishing emails. This practice “imputes 
computational processes… onto cognitive 
functions,” producing algorithmic and analytic 
descriptions of specific psychological mechanisms 
that can be simulated through a computational and 
accrual model (Sun 2008). Such models may be 
contrasted against “product theories,” which 
describe the mental inputs and outputs that produce 
behaviors but do not represent internal 
psychological processes. Cognitive architectures, 
such as ACT-R and Soar (Anderson 1996; Laird 
2012), provide frameworks to develop specific 
cognitive models. In addition to predicting potential 
issues such as errors in decision making or delays 
in reaching a task goal, computational cognitive 
modeling sheds light into plausible causes, based 
on emerging cognitive conditions, to provide 
guidance toward an effective remedy. 
This paper builds upon our team’s two recent efforts: 
a simulation study using computational cognitive 
modeling to examine cybersecurity decision-making 
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(Shonman et al. 2018) and a recent empirical study 
of users classifying emails as legitimate or phishing 
(Zhang et al. 2018). The current work offers two 
contributions to this ongoing investigation: 

• We refine our original ACT-R-based 
cognitive model of phishing detection 
(Shonman et al. 2018) by adding two model 
parameters to the original three, which lend 
greater complexity to our representations of 
both user perception of a suspect email and 
a user’s past experience with phishing and 
legitimate emails. We have conducted new 
simulations to observe this model’s behavior 
on a range of input values. 

• We compare the simulation results with data 
from the previous empirical study to assess 
our model’s validity. Multiple simulation 
results align with existing insights and best 
practices for phishing email identification, 
pointing to the utility of this modeling 
method. 

Our code and collected user data are available at 
https://behavior.isi.jhu.edu. 

2. LITERATURE REVIEW 

Veksler et al. (2018) explored potential uses of 
cognitive modelling in cybersecurity contexts, such 
as comparing the effects of training strategies on 
users and understanding the psychology of 
attackers, defenders and users to facilitate security 
improvements. Veksler and Buchler (2016) 
presented three simulations demonstrating that 
techniques such as model tracing and dynamic 
parameter adjustment allow computational cognitive 
models, in the context of social security games, to 
outperform normative game theory in understanding 
and responding to cyber attackers. 

The computational cognitive model described by 
Dutt et al. (2013) strongly influenced our work. They 
use instance-based learning theory to simulate the 
behaviour of a security analyst in determining 
whether a series of network events constitutes a 
cyberattack. The model represents situation 
information as a series of attributes denoting details 
of a network event, including the network location, 
alert and operation result. Security analysts classify 
individual events as threat or non-threat by 
examining past similar experiences, stored as 
individual “chunks” in memory. Per the ACT-R 
architecture, chunks are scored based on similarity, 
retrieval recency, and other factors, and the chunk 
scored highest is used to classify the event under 
consideration. For each event sequence, a counter 
increments for each new event judged as a threat. 
When the counter surpasses a set threshold, the 
entire sequence is classified as a cyberattack. 

Our model of email sorting (in Shonman et al. 2018 
and in Section 3.2 below) adapts this work to 
describe step-by-step (cue-by-cue) processing of a 
suspicious email, adding additional parameters to 
introduce more complexity to each email judgment. 

Independently, Cranford et al. (2019) have also 
applied ACT-R-based cognitive modelling to the 
study of phishing detection. Their model differs in 
several aspects from ours: it processes an entire 
email in one step, as opposed to our model which 
judges individual phishing cues; it uses an ACT-R 
blending mechanism to calculate a “consensus 
value” from many similar memories, while ours 
retrieves the single memory fragment judged most 
similar to the current cue; and it uses semantic 
closeness between emails to compute the similarity 
of each memory to the current email, while ours 
calculates similarity as the difference between 
coded attributes within the current email cue and 
respective attributes within each memory. 

3. METHODOLOGY 

3.1. Phishing User Study Design and Execution 

The research team went through our university’s 
Institutional Review Board approval protocol. 177 
participants from the United States were recruited 
through Amazon Mechanical Turk in late 2017. 

3.1.1. User Study Design and Execution 
Participants functioned as a personal assistant 
directed to classify 40 emails into either a “keep” or 
“suspicious” (phishing) folder. Emails appeared in a 
random order for each participant. After classifying 
each email, participants rated their confidence in 
that classification decision on a scale from 1-10. 

Zhang et al. (2018) details the study’s various 
experimental conditions (single-tasking vs. 
multitasking and incentive vs. no-incentive), which 
we will not discuss here. Our analysis focused on the 
77 participants in single-task conditions who sorted 
all 40 emails within the 30-minute time limit. 

Participants viewed emails in the Roundcube 
webmail system (https://roundcube.net) with a 
countdown timer displayed on the screen. Through 
several pilot studies that tested the protocol and 
parameters, we judged that the time pressure was 
sufficient to keep participants engaged during the 
full study period and to help reduce potential bias 
introduced by having informed them to look for 
phishing emails. 

3.1.2. Phishing Cue and Email Design 
All 40 emails were created from real emails with 
personally identifiable information modified. The 20 
phishing emails stem from a semi-random sample of 
emails in Cornell University’s “Phish Bowl” database 
(https://it.cornell.edu/phish-bowl). The 20 legitimate 
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emails were derived from emails received by the 
research team and consisted of promotions, 
notifications (like “Final Reminder for Warranty 
Activation”) and requests for information. 

Table 1: Phishing Cue Definitions (Shonman et al. 2018). 

Cue Type Cue Definition 
No Branding/ 
Logos 

Does the email lack company 
branding and/or logos? 

Overall Design Does the overall email quality 
appear poor? 

Suspicious 
Sender Name 

Does the sender display name 
appear suspicious? 

Subject Does the subject line direct the 
receiver to take an action? 

Lack of Sender 
Details 

Does the email provide sender 
information beyond a name? 

Generic 
Greeting 

Is the email greeting absent/not 
addressed to the individual? 

URL Hyperlink 
(possibly 
multiple cues 
per email) 

Scored according to presence or 
absence of two attributes: 

• Does the URL text suggest 
a webpage different from 
the true link? 

• Does the URL website 
match the email sender? 

Spelling/ 
Grammar 

Does the text contain any 
spelling/grammar mistakes? 

Time Pressure Does the email request include a 
deadline? 

Threatening 
Language 

Does the email threaten a negative 
consequence if instructions 
unfollowed? 

Emotional 
Appeal 

Does the email elicit a sympathetic 
or otherwise emotional response? 

Too Good to 
be True 

Does the email present a too-good-
to-be-true offer? 

Personal 
Information 

Does the email request personal 
information? 

 
We analysed 12 phishing cues defined in Molinaro 
and Bolton (2018) that imply whether an email is 
legitimate or phishing, such as whether the email 
requested personal information. (The simulation 
uses the modified 13-cue set in Table 1.) Legitimate 
emails may contain individual suspicious cues, such 
as misspellings or an absent greeting, while 
phishing emails may contain non-suspicious cues 
and thus seem legitimate. However, phishing emails 
on average contained more suspicious cues than 
did legitimate emails, providing a path to accurate 
classification. For example, Suspicious Sender 
Name appeared in 12/20 phishing emails but only 
4/20 legitimate emails, and Lack of Sender Details 
was present in 15/20 phishing emails but only 3/20 
legitimate emails. 

All emails were manually coded by the research 
team to identify the cues present. 

3.1.3. Data Collection and Performance Measures 
Our analysis considered individuals’ self-reported 
age, education level and experience with network or 

cybersecurity courses/certificates. We also utilized 
participants’ self-rated confidence in each email 
classification decision (1: no confidence, to 10: 
extremely confident). Six performance measures 
were recorded for each participant: 

i. False negative rate [FNR]: error rate for 
phishing email classifications (range [0,1]); 

ii. False positive rate [FPR]: error rate for 
legitimate email classifications (range [0,1]); 

iii. Total processing time for all legitimate 
emails (range approximately (0,900) 
seconds); 

iv. Total processing time for all phishing emails 
(range approximately (0,900) seconds); 

v. Average confidence rating for legitimate 
email classifications (range [0,10]); 

vi. Average confidence rating for phishing 
email classifications (range [0,10]); 

Measure (v) was averaged across the 20 legitimate 
emails, with measure (vi) averaged across phishing 
emails. 

3.2. Phishing Detection Model and Simulation 

3.2.1. Model Design 
Our model (Figure 1) represents the cognitive 
process of an individual determining whether a 
series of emails are phishing or legitimate, drawing 
upon the single-task scenario in the empirical 
phishing study. In the model, the “user” classifies an 
email by evaluating the email’s individual cues as 
“threat” or “non-threat.” Each cue is classified by 
comparison to individual “chunks” in the user’s 
simulated long-term memory (the mode of memory 
that retains information indefinitely, as opposed to 
short-term memory that holds “active” information 
for less than one minute). Chunks represent 
previously encountered cues for which the email 
nature (phishing/legitimate) is known. 

3.2.2. Model Parameters 
This study investigated how changes in 
experimental parameters influence the model’s 
phishing classification performance. The model 
used five parameters. Parameters (i)-(iii) were 
examined in the previous simulation report 
(Shonman et al. 2018). Parameters (iv) and (v) are 
new to this study. 

i. Suspicion Threshold: This term denotes the 
number of suspicious cues classified before 
the user marks an email as phishing. Values 
were whole numbers from 2 to 6, always 
less than the Maximum Cues Processed 
parameter value. 

ii. Maximum Cues Processed: If the suspicion 
threshold is not crossed, this term denotes 
the highest number of cues per email that a 
user evaluates before deciding. Values 
were whole numbers from 7 to 12. The lower 
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bound ensured that at least one cue beyond 
the first six (fixed-ordered) cues would be 
classified; the upper bound was selected 
because one email only had 12 cues. 

iii. Weight of Similarity: This parameter 
corresponds to Pl in Equation 3 (Section 
3.2.5), which weights the similarity term 
used in the memory chunk activation 
equation (Equation 1). Values were whole 
numbers from 1 to 7. This variation allowed 
us to examine the similarity term’s 
interaction with the base-level learning and 
noise terms. In comparing a chunk in 
memory to the cue currently under 
consideration, greater weights translate to a 
higher value of the similarity term within the 
activation equation. 

iv. Flawed Perception Level: This value 
determines the probability that the “user” 
correctly classifies any information cue in 
the current email being processed. Higher 
values raise the likelihood that the user will 
code the information cue wrongly. The term 
varied from 0.0 to 0.5, incrementing by 0.1. 

v. Legitimate-to-Phishing Email Ratio [L-P 
Ratio] in long-term memory: This value 
represents the experience of previously 
seen legitimate and phishing emails for a 
user. The term started with 20 legitimate 
and 20 phishing emails (1:1). Since this ratio 
for real-world emails is estimated at roughly 
3000:1 (Symantec 2018), we input the ratios 
10:1, 100:1, 3000:1 and 5000:1 to observe 
the parameter’s potential influence. 

3.2.3. Cue Chunks in Long-Term Memory 
	
The simulated long-term memory was populated 
with chunks derived from the 40 empirical study 

emails. (Note that each email contained 0-13 
hyperlinks, all encoded as distinct chunks.) In this 
way, these emails are the source of cue chunks, i.e. 
past knowledge facts, that are associated with 
legitimate and phishing emails. Considering that 
legitimate emails outnumber phishing emails in real-
world experiences, we duplicated the cue chunks 
associated with the 20 legitimate emails multiple 
times for different L-P Ratio settings. 

Memory chunks contain the following components: 

• Cue type: One of the 13 different cue 
categories (Table 1). 

• Attribute score(s): Each is 0 if the question is 
answered “No,” and 1 otherwise (Table 1). 

• Utility: Value is 0 if the email associated with 
this past cue was normal; 1 for phishing. 

At the beginning of each simulation run, all long-term 
memory chunks were entered simultaneously. 

3.2.4. Cue Processing and Email Classification 
The model processes an email one cue at a time. 
During classification of a cue, every cue chunk of 
that same cue type in the long-term memory 
receives an updated “activation” score according to 
a formula described below in 3.2.5. If the cue chunk 
with the highest score belonged to a phishing email, 
the current cue is classified as “threat.” The model 
maintains a counter starting at zero for every email, 
which increments by one for each cue judged as 
threat. An email is classified as phishing when the 
number of cues so judged passes the Suspicion 
Threshold level. 

Not all cues in each email were processed. One 
model parameter sets the maximum number of cues 
that can be classified per email, separate from the 
Suspicion Threshold. When this number is reached, 

Start of the simulation 
For each of 100 users 
    Populate the long-term memory with all the cue chunks derived from the 40 emails according to Legitimate-Phishing (L-P) Ratio(a);  
    For each email of the 40 emails randomly ordered 
        Reset Number of Processed Cues to 0; 
        Reset Suspicion Level to 0; 
        For every cue in the email processed either in linear order or simultaneously according to the cue type (b) 
            If Number of Processed Cues <= Maximum Cues Processed AND Suspicion Level < Suspicion Threshold 
                Update the activation values of all the related cue chunks in long-term memory (c); 
                If the utility of the cue chunk being retrieved with the highest activation value is 1 
                    Increase the Suspicion Level by 1. 
                Endif 
            Endif 
        End 
        If the Suspicion Level = Suspicion Threshold 
            This email is classified as phishing. 
        else 
            This email is classified as normal. 
        Endif         
    End 
End 
End of the simulation 

Figure 1: A computational model based on cognitive chunk activation revising and instance-based learning (a: see 3.2.3 
Cue Chunks in Long-term Memory; b: see 3.2.4 Cue Processing and Email Classification; c: see 3.2.5 Cognitive Chunk 

Activation). 
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the email is classified as normal if the Suspicion 
Threshold has not been crossed. 

Information cues were visited in a manner combining 
fixed steps and random elements. Expert input and 
a pilot study suggested that email readers tend to 
view the following elements in sequence: limited text 
visuals, sender, subject, greeting and “story” text. As 
a result, the model visits the six cues analogous to 
these elements (the first six cues in Table 1) in a 
linear order. Because no inherent order emerges for 
the remaining seven cues, their order is not fixed, 
and the model treats these cues as processed 
simultaneously by the user. All memory chunks 
corresponding to these seven cue types are likewise 
pooled together; the memory chunk being activated 
determines which cue is processed next. 

Flawed Perception Level sets the probability that the 
simulated user flips the attribute score of a cue upon 
reading it (equivalent to misinterpreting a suspicious 
cue as benign or vice versa). 

3.2.5. Cognitive Chunk Activation 
In the ACT-R cognitive architecture, declarative 
knowledge (i.e. facts and events) is stored as 
discrete “chunks” in long-term memory (Anderson 
1996). Information chunks relevant to a present 
situation are selected according to an activation 
value calculation, simplified in Dutt et al. (2013) as: 

𝐴! = 𝐵! + 𝑆𝑖𝑚! + 𝜀!  (1) 

Bi represents a base-level activation, combining the 
recency and frequency of a chunk’s prior retrievals. 
Simi denotes the association or similarity between a 
chunk and the current information cue. εi is a random 
noise term to model imperfection in human 
cognition. The components of this equation are 
detailed below, drawn from Dutt et al. (2013). 

For the ith memory chunk: 

𝐵! = 𝑙𝑛(∑ (𝑡 − 𝑡!)"#$!∈{',…,$"'} ) (2) 

{1,…,t – 1} represents the set of past activation times 
for the given chunk. (t – ti) represents the lapse 
between current time t and a given past activation 
time ti. Decay term d has a default value of 0.5. Our 
study used relative time, omitting duration units. 

𝑆𝑖𝑚! = ∑ 𝑃+ ∗ 𝑀+!
,
+-'    (3) 

Pl is a weight term which we varied as one model 
parameter (i.e. Section 3.2.2). Mli represents the raw 
similarity score comparing the lth information 
attribute with the present situation. Mli was scored as 
0 if the lth attribute value in a memory chunk 
matched that of the current cue under consideration, 
or -1 if the two values were unequal. 

𝜀! = 𝑠 ∗ 𝑙𝑛('".!
.!
) 	   (4) 

ηi is drawn from a uniform random distribution 
between 0 and 1 exclusive. Weight s has a default 
value of 0.25. 90% of εi values lie between ±0.736. 

3.2.6. Simulation Output 
The simulation was run 100 times for each 
combination of parameter settings. Corresponding 
to the performance measures from the empirical 
study (Section 3.1.3), we defined six performance 
measures based on the simulation output: 

• False negative rate [FNR]: equals # false 
negatives [FN] / (# FN + # true positives); 

• False positive rate [FPR]: equals # false 
positives [FP] / (# FP + # true negatives); 

• Average processing time, negative [TN]: 
average time spent assessing a legitimate 
email, measured as number of cues 
processed; 

• Average processing time, positive [TP]: 
average time spent assessing a phishing 
email, measured as number of cues 
processed; 

• Confidence rating, negative [CRN]: equals 1 
– (suspicion_counter of a legitimate email) / 
(number of cues_checked); 

• Confidence rating, positive [CRP]: equals 1 
– (suspicion_counter of a phishing email) / 
(number of cues_checked). 

Note that a higher CRN or CRP means a higher 
confidence. We conjecture that simulated users who 
check more cues will make a more informed 
decision, translating to a greater confidence rating. 
As with the empirical study metrics, CRN and CRP 
were distinguished based on the true classification 
of each email. 

4.  RESULTS 

4.1. Clustering Analysis of Empirical Data 

Our initial significance tests (Zhang et al. (2018)) 
failed to clearly characterize the participants. This 
suggests that the subpopulations we sought did not 
prominently vary along individual performance 
measures. Therefore, we utilized k-means clustering 
to examine their interactions by simultaneously 
considering all six performance measures (as in 
Section 3.1.3). We normalized the minimum and 
maximum bounds of all performance measures to 0 
and 1. After experimenting with k values from two to 
eight, the most informative findings emerged for a 
division of three distinct subpopulations: 

• An “overachiever” cluster with strong overall 
performance (n = 34); 

• A “conservative” cluster featuring lower FNR 
and higher FPR (better at identifying 
phishing than legitimate emails) (n = 16); 
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• A “naive” cluster featuring lower FPR and 
higher FNR (more accurate at identifying 
legitimate than phishing emails) (n = 27). 

Figure 2 shows the clustering results as a set of two-
dimensional scatter plots. In Figure 2a, displaying 
FNR and FPR, a numeric label denotes the number 
of overlapping points, i.e. participants with the same 
FNR and FPR values. Figure 2b compares 
processing times for phishing and legitimate emails, 
also fitting linear regression lines on each cluster. 
Figure 2c shows participants’ average decision 
confidence ratings for phishing and legitimate 
emails. Finally, Figure 2d shows participants’ age, 
education level and cybersecurity training along with 
their cluster. 

As shown in Figure 2a, naive-cluster participants 
demonstrated comparatively high FNR, signifying 
less success in detecting phishing emails. Not 
coincidentally, as per Figure 2b, these participants 
also spent more time classifying phishing emails 

than legitimate ones. Similarly, conservative-cluster 
participants exhibited relatively high FPR: they 
experienced more difficulty classifying legitimate 
emails despite spending more time on these emails. 

The overachiever cluster mostly includes 
participants with both low FNR and FPR. These 
participants also reported the highest confidence 
level among the three clusters. The corresponding 
linear regression line in Figure 2b indicates that 
these participants showed an overall slight tendency 
to spend less time on phishing emails. One potential 
explanation is that they had to examine a legitimate 
email more thoroughly, for example, by checking 
more phishing cues, before confidently moving it to 
the “keep” folder. However, they only needed to find 
“enough” suspicious evidence to correctly classify a 
phishing email. This seems to support a similar 
strategy used in the simulation study of single-task 
users as reported in Shonman et al. (2018).  

Intuitively, higher confidence ratings would be 
associated with better task performance. As shown 

Figure 2: Clustering of participants in the no-multitasking condition where performance measures were 
normalized into three user types. Education levels in subplot d were coded as follows: 1: No High School 
Diploma; 2: High School; 3: Some College; 4: Two-Year Associate; 5: Four-Year Bachelor; 6: Master’s 

Degree; 7: Doctorate Degree. 
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in Figure 2c, confidence ratings of different clusters 
generally reflected their relative success at detecting 
phishing, legitimate or both types of emails. 
However, points from different clusters are 
interspersed: some conservative-cluster participants 
were less confident on legitimate emails, and some 
naive-cluster participants expressed higher 
confidence on phishing emails. (Similarly, Figure 2b 
also features overlap between clusters on email 
processing time.) These observations, consistent 
with findings in our previous reports, highlight the 
difficulty of relying on just one or two performance 
criteria to characterize security behaviours, and the 
necessity of a comprehensive approach such as 
clustering. 

Figure 2d highlights the potential influence of 
cybersecurity training experience and advanced 
education on phishing classification. All participants 
with cybersecurity training, across all education 
levels, lie in the overachiever cluster, as do all but 
one individual possessing master’s or doctoral 
degrees. No participants older than 45 possessed a 
graduate degree or had cybersecurity training, and 
only one individual in that age group is in the 
overachiever cluster. These observations seem to 
support previous research, including Gavett et al. 
(2017), holding that academic study or training can 
effectively improve a person’s security behaviour. 
Given the findings of Gavett et al. and Lin et al. 
(2019) that aging did not show direct impacts on 
phishing success, we conclude that the over-45 
population’s performance is likely better explained 
by their lack of training and advanced education 
rather than directly by their age. Additional research, 
with a study population including older participants 
who possess greater training and education, may 
further clarify the roles of these factors. 

4.2. Clustering Analysis of Simulation Data 

To obtain insights into the model’s efficacy, similar 
clustering analysis methods as used on the 
empirical study data were applied to the simulation 
results. The k-means clustering analysis used all six 
performance measures (as in Section 3.2.6), each 
normalized on a [0, 1] scale, to identify distinct user 
groups (represented by particular combinations of 
input parameters in the simulation). 

This analysis pursued two goals. First, we 
questioned whether our model could accurately 
represent the types of users apparent from the 
empirical study. We therefore “hunted” for user 
categories corresponding to the three clusters 
identified in the empirical study data. Second, we 
hoped that analysing the parameter settings 
associated with individual clusters would help 
identify the factors related to these users’ unique 
performance characteristics. This is similar to the 
demographic analysis in the empirical study. 

One notable difference emerged when comparing 
the clustering analyses of simulation and empirical 
results. Each instance in the simulation represents a 
distinct combination of model parameter values, 
corresponding to one “type” of user. These 
parameter values are varied continuously across 
given ranges. However, each instance in the 
empirical study corresponds to a single real 
individual, many of whom may exhibit similar traits 
that do not vary continuously across a spectrum. As 
a result, a certain empirical user type may 
correspond to multiple individuals in data, resulting 
in more apparent patterns represented by clusters. 
Clusters may be dense with specific user types, with 
sparse or no instances of other types in between. 

Figure 3 shows the results for k=3, the same number 
of clusters identified in the empirical study results, 
for simulations with an L-P Ratio of 3000:1. Figure 
3a displays sorting accuracy (FNR and FPR). 
Clustering analysis on these data produces less 
distinct clusters than those from the empirical data. 
Specifically, simulated overachiever-cluster users 
do not exhibit a significantly stronger performance in 
either FNR or FPR, compared to real users from this 
cluster in the empirical study. 

Figure 3b highlights email processing time. Unlike 
the empirical results, the simulation data 
demonstrate clear differences between clusters for 
this metric; average time is longest for the 
overachiever cluster and shortest for the 
conservative cluster. According to the respective 
linear regression lines, all simulated users generally 
spend more time on legitimate emails than on 
phishing emails. This is reasonable given that they 
must examine a legitimate email more thoroughly, 
for example, by traversing more cues, before 
asserting the email to be legitimate. However, 
correctly classifying a phishing email only requires 
that enough suspicious cues are found to cross the 
suspicion threshold level, so simulated users 
understandably take less time to identify such 
emails. 

As in Figure 3c, simulated overachiever-cluster 
users possess the highest confidence scores, then 
naive-cluster users, with the lowest scores among 
conservative-cluster users. Compared to 
conservative-cluster users, naive-cluster users 
examine more information cues and exhibit higher 
confidence scores while still tending to misclassify 
more phishing emails as legitimate. This behaviour 
suggests that greater confidence does not 
necessarily indicate more accurate classification 
decisions in the model, potentially due to simulated 
users simply lacking appropriate evidence to judge 
certain emails. By contrast, confidence ratings in the   
empirical study data show less distinction between 
the three clusters, as in Figure 2c. 

Figure 3d presents box plots to summarize the 
model parameter settings within each cluster and 
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highlight relevant trends. Overachiever-cluster users 
tend to have the highest upper bounds on number of 
cues examined, corresponding to the fact that these 
users spend more time on emails and show higher 
confidence in their classifications. Overachiever-
cluster users also exhibit higher Suspicion 
Thresholds, followed by naive-cluster users. A 
higher Suspicion Threshold allows more cues to be 
examined before an email is classified, decreasing 
the risk that a few suspicious cues encountered 
initially will skew the classification decision. Flawed 
Perception Level lacks an obvious distinction among 
the three clusters. However, comparing the median 
and mean values, conservative-cluster users skew 
toward a higher value, with the other clusters 
skewing opposite.  

Arguably, the clustering analysis does not effectively 
capture overachiever-cluster users, as overachiever 
and naive clusters are closely intertwined in several 
plots. This suggests that real users who perform well 

may employ more sophisticated phishing detection 
strategies. Their suspicion level may be based on 
correlating multiple cues together, instead of 
examining each cue in isolation as the model does. 
Moreover, real-life “email suspicion level” is 
presumably more dynamic than our model’s version, 
with the ability to decrease as well as rise. 

Results for other L-P Ratios are very similar. 

5. DISCUSSION 

5.1. Interpretations and Suggestions 

Insights from this simulation study align with 
successful real-world phishing identification 
strategies, point to further avenues for improving the 
model, and highlight ways in which specific 
combinations of input parameters can produce 

   

Figure 3: Clustering of simulation results using three clusters (L-P Ratio = 3000:1). 

a) Accuracy (FNR-FPR) b) Average Processing Time (TN-TP) 

c) Confidence Levels (CRN-CRP) d) Individual Cluster Analysis 
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simulation runs aligning to salient characteristics of 
user populations from the empirical study. 

Two observations from the simulation align with the 
standard recommendation that real users thoroughly 
examine all emails to detect phishing indicators (per 
Parsons et al. (2019), Vishwanath et al (2016), etc.). 

• Simulated overachiever-cluster “users,” the 
best-performing group, featured significantly 
higher settings for the Maximum Cues 
Processed parameter than did simulated 
users in the other two clusters. In other 
words, this group’s greater success rate was 
associated with being most likely to inspect 
many aspects of an email for suspicious 
evidence. 

• Simulated users from all groups tended to 
spend more time judging legitimate emails 
than phishing emails (Figure 3b). To identify 
a phishing email, users need only spot a few 
suspicious cues; however, they must 
traverse almost all cues to verify an email as 
legitimate. This behaviour is largely 
consistent with the empirical study results, 
for which the majority of participants spent 
more time on legitimate emails (Figure 2b). 

The model found no effect on phishing detection 
from varying L-P Ratio (i.e. degree of past exposure 
to phishing emails stored in long-term memory). This 
might imply that such experience does not 
guarantee higher detection accuracy in the future, 
but previous empirical studies disagree: Gavett et al. 
(2017) found that previous phishing knowledge did 
influence older adults’ susceptibility to phishing 
emails, and Singh et al (2019) concluded that higher 
ratios of phishing emails in training sets led to 
greater detection by users. An alternate explanation 
is that other parameters (Maximum Cues Processed 
and Suspicion Threshold) outweigh L-P ratio in 
determining model performance. Future model 
iterations might explore more complex ways to 
represent the effect of past phishing exposure. 

In addition, some characteristics of simulated users 
using these model parameters also correspond to 
the demographic background of real users. For 
example, cybersecurity training and education are 
strong predictors of user performance, as shown in 
the empirical study. In the simulation, higher values 
for the Maximum Cues Processed and Suspicion 
Threshold parameters, which can represent greater 
education, positively correlate with user 
performance (as in Figure 3). A higher Flawed 
Perception Level in the simulation could potentially 
represent increased age, or a combination of age 
and lack of cybersecurity training. As previously 
stated, these factors were difficult to separate in the 
empirical study; more research would illuminate 
which demographic factors can be associated with 
this parameter. 

5.2. Limitations and Future Work 

While the model echoes overall trends of the three 
identified user types, discrepancies exist between 
simulated and real users. Notably, simulated 
“overachievers” perform more poorly than real 
participants in that cluster. Additionally, the average 
Suspicion Threshold of simulated overachievers is 
higher than that of simulated naive users, even 
though the latter group, which tend to classify 
inordinately many emails as legitimate, should 
intuitively exhibit the highest values for this 
parameter. 

As noted in Section 4.2, one distinction between the 
empirical and simulation data is that the empirical 
results are not evenly distributed across the range of 
potential user “types.” For example, multiple 
individuals might come from similar educational 
backgrounds, be of similar ages, and exhibit similar 
performance on the study task. By contrast, 
instances in the model are evenly spread across the 
full spectrum of parameter combinations. This 
distinction made direct quantitative comparisons 
between the two data sets inherently difficult, 
leading us to pursue qualitative comparisons in this 
paper. Future research might look for the subset of 
simulation values that match observed “types” of 
empirical study participants, thus permitting 
accurate quantitative analyses between the two 
datasets. 

Real users presumably weight various cues 
differently and use additional strategies beyond cue 
identification to spot phishing emails. For example, 
poorly formatted emails might still be trusted if sent 
from a known source, and real-world “suspicion 
threshold” may shift dynamically based on factors 
like situational urgency. Additional research could 
explore how and when humans adjust their mental 
equivalents to the model’s parameters. 

Finally, this simulation uses the same set of 20 
legitimate and 20 phishing emails for both testing 
and long-term memory construction. The lack of a 
“training” step in modelling and the similarity 
between training and testing data might sway the 
simulation results. Future work should utilize more 
representative email datasets. 

6. CONCLUSION 

Effectively combatting phishing threats will require 
further understanding of the boundaries and 
limitations of human cognition and security-related 
decision making. Computational cognitive modelling 
offers a promising approach to complement 
empirical user studies and tackle emerging hard 
problems in this field. This study set to identify how 
closely the initial model could reinforce existing real-
world phishing detection strategies and the extent to 
which user subgroups observed in the empirical 
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study could be replicated using parameter settings 
in the simulation. Future work can build upon these 
modelling strategies, utilizing more dynamic and 
sophisticated mechanisms to fully represent and 
capture the mental complexities that result as 
humans attempt to identify phishing threats. 
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