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Abstract—Machine learning-based spam detection models
learn from a set of labeled training data and detect spam emails
after the training phase. We study a class of vulnerabilities
of such detection models, where the attack can manipulate a
trained model to misclassify maliciously crafted spam emails
at the detection phase. However, very often feature extraction
methods make it very difficult to translate the change in the
feature space to that in the textual email space. This paper
proposes a new attack method of making guided changes to text
data by taking advantage of findings of generated adversarial
examples that purposely modify the features representing an
email. We study different feature extraction methods using
various Natural Language Processing (NLP) techniques. We
develop effective methods to translate adversarial perturbations
in the feature space back to a set of “magic words”, or
malicious words, in the text space, which can cause desirable
misclassifications from the attacker’s perspective. We show that
our attacks are effective across different datasets and various
machine learning methods in white-box, gray-box, and black-
box attack settings. Finally, we discuss preliminary exploration
to counter such attacks. We hope our findings and analysis will
allow future work to perform additional studies of defensive
solutions against this new class of attacks.

I. INTRODUCTION

Recent studies have shown the vulnerability of machine
learning models to adversarial attacks where small input
perturbations lead to misclassification. For example, recent
works in computer vision use gradient-based methods [1],
[2] to generate adversarial attacks against image classifica-
tion models. Concerning text classification models, machine
learning classification models have been employed for mod-
ern spam email filters, and such spam filters are susceptible
to adversarial attacks [3]. In a successful adversarial attack,
perturbed versions of the original spam email text can get
misclassified by the spam filter, thus bypass the detection.

Adversarial attack generation against spam filters is more
challenging than that in image classification models because
of the discrete nature of the text space. Image data is
continuous, and perturbations can be introduced directly to
maximize the loss based on the gradients in the numerical
feature space. In contrast, text data is discrete and needs to
be converted to numerical features for a classification model.
Consequently, a major challenge in applying gradient-based
methods to generate adversarial attacks against spam filters
arises from the interpretation of the perturbations generated

in the continuous feature space to information in the discrete
text space. A small perturbation in the continuous feature
space may not be transformed to an equivalent change in
effect when dealing with a character or word in the discrete
text space.

In this paper, we present an effective method for crafting
adversarial spam emails against machine learning-based spam
filters. We propose an attack method for text data by lever-
aging gradient-based methods studied in the computer vision
domain and employing NLP techniques for crafting adversar-
ial examples in text space and modifying spam email content
to bypass the spam filters. We investigate and compare
different natural language feature extraction approaches such
as TF-IDF (term frequency-inverse document frequency) [4],
Word2vec [5], and Doc2vec [6] in white-box attacks. We
propose a new method that enables identifying the changes
needed in an email for successful perturbations in the feature
space by modifying the Word2vec and Doc2vec techniques
in order to keep the mapping between words and features.

We study the effectiveness of our methods in gray-box and
black-box attacks on spam filters built with different classi-
fication models including Support Vector Machine (SVM)
models [7] [8], Bayesian classification models [9] [10],
Decision Tree models [11], and Multilayer Perceptron (MLP)
models [12]. Additionally, we study the attack’s effectiveness
on ensemble learning where the classification aggregates re-
sults from three learning models. Prior works have proposed
ensemble learning method as a defense strategy against ad-
versarial attacks [13]. We empirically show that our proposed
attack is effective against ensemble learning models. Through
experimental evaluations on different datasets, we demon-
strate that the proposed approach can generate adversarial
examples in the text space and effectively reduce the spam
filter’s detection accuracy.

In summary, we made the following contributions:
• For popular Word2vec and Doc2vec techniques, we pro-

pose using a single feature for every word that enables
the identification of “magic words” for attack email
generation based on adversarial perturbations obtained
in the feature space.

• We study and gain insights into the dynamics of how
the attack in the feature space relates to the attack in



the email space. We show a useful model of this threat
by its cost and gain from the perspective of attackers

• To have a comprehensive understanding of the prob-
lem, we conduct experimentation with different feature
extraction methods, classifiers, and spam datasets in a
range of white, gray, and black-box attack scenarios.

II. RELATED WORK

Successes of adversarial machine learning are evident in
domains such as image classification [1] [2] [14], voice
processing systems [15] [16] [17], or movement sensory
data [18]. However, two significant challenges exist for their
applications to evasion attacks to bypass computer attack
detection systems, including the usually difficult interpre-
tation of feature perturbations back to the changes to an
original attack in the problem space and the need to preserve
the functionality and maliciousness of an attack during this
process.

In one effort to handle these challenges, Han et al. [19] pro-
posed a bi-level optimization model that separately produces
successful adversarial instances in the feature space and mu-
tates original malicious network traffic to have feature values
close enough to these instances based on given constraints.
The allowed mutations are changing the packet interval-time,
which is continuous, and are duplicating partial traffic, in
which the changes are discrete. Other relevant efforts to evade
malware detection modify certain components of a malware
program while preserving the functionality of the malicious
code. For example, Hu and Tan [20] represented a malware
piece by binary features, each of which indicates whether
a certain API function is used. Only allowing adding API
functions, a generative adversarial network (GAN) model
in black-box settings can generate adversarial malware ex-
amples by examining perturbed feature vectors that are
successful.

Adversarial attacks on spam email detection are a special
case that handles a large number of words, each of which
is considered in the feature space. However, most exist-
ing approaches are basic, with some linguistic constraints,
searching among the variants of an email by substituting or
deleting words for NLP adversarial attack examples that can
cause the desired change in classification [21]. Wittel and
Wu [22] categorized such attacks into three types, tokeniza-
tion attacks where spammers intend to disturb tokenization of
the email content by splitting or modifying features, such as
inserting extra spaces in the middle of the words; obfuscation
attacks where the email content is obscured from the detector
using encoding or misdirection; and statistical attacks where
spammers attempt to skew the message’s statistics to distract
the detector. A popular statistical attack is proposed in [23],
where a set of “good words”, after being added to spam
emails, can cause misclassifications by two types of statistical

spam detectors: maximum entropy and naive Bayes filters.
Other examples of statistical attack include [24] [25].

In [26], the authors proposed two new methods of crafting
spam emails that take advantage of the knowledge gained
in perturbing input features of an ML model. Preliminary
results showed that one of these two methods can efficiently
identify a set of “magic words” to add to a spam email,
without changing its nature, in order to bypass a spam
detector. This method is novel in that it bridges the findings of
adversarial attacks in the feature space, e.g., TF-IDF vectors,
back to changes needed to be made in the problem space,
e.g., emails. In this present paper, we greatly expand this
effort to characterize the changes in the feature and problem
spaces using various feature extraction methods, classifiers,
and datasets.

III. ATTACK METHODOLOGY

The workflow of our methodology is shown in Figure
1. We first conduct text cleaning to preprocess datasets
by removing special characters from the raw datasets. We
then conduct feature extraction to transform cleaned email
texts into numerical feature vectors in the feature space. We
utilize the Projected Gradient Descent (PGD) attack on the
features of a set of spam emails to generate misclassifications.
Those successful perturbations done on these spam emails
are analyzed to identify a set of “magic words” that can be
added to spam emails. These modified spam emails are fed
to machine learning models to examine their effectiveness
of bypassing the detection. In addition to white-box attacks
on the SVM classifier used for the PGD attack, we study
gray-box and black-box attacks where the target classifier is
different, representing the scenarios in which the knowledge
of targeted spam detection models is totally or partially
unknown to the attacker.

A. Feature Extraction

In this step, we convert the text content of an email into
a numerical feature vector, representing information of that
email used for classification. There are many vectorization
methods to convert text data into numerical vectors, and
we study the commonly used ones to form our feature
space: TF-IDF, Word2vec, and Doc2vec. However, necessary
modifications are needed in order to support the interpretation
of changes in the feature space to the text space.

1) TF-IDF: TF-IDF calculation includes calculating the
term frequency (TF) and inverse document frequency (IDF)
for each word in an email. TF is how often a word appears in
one email, and IDF is how often a word appears in the corpus
of an email dataset. The IDF term is smoothed to better
handle common words appearing in every document. The
higher frequency of a word in a particular file and the lower
file frequency of the word in the entire file collection results
in a higher TF-IDF value, which reflects the significance of
the word or feature related to an email. For each email, a



Figure 1. Workflow of generating adversarial perturbations, crafting adversarial emails, and conducting attacks

Figure 2. Constructing feature vectors for emails using Word2vec or Doc2vec technique with a single dimension for each word



Figure 3. Constructing feature vectors for emails using Word2vec or Doc2vec technique with a 200 dimensions

vector of these TF-IDF features for all the words appearing
in the dataset contains information useful to tell its nature,
being normal or abnormal.

2) Word2vec: Existing Word2vec models can be trained
to transform emails to feature vectors. As in many common
applications, each word is converted into a vector with 200
dimensions. The steps for such a conversion are shown in
the upper part of Figure 3. As a result, we can obtain a
list of vectors where each vector represents one word in a
given email. To represent one email with only one vector, we
calculate the average values for each dimension in this list
to form a new vector with 200 dimensions. After repeating
this process with every email, we finally obtained a feature
space with 200 dimensions.

Unfortunately, since features generated from this conven-
tional approach do not map to individual words, we cannot
use information gained during adversarial perturbations to the
features to identify “magic words” for crafting spam emails.
Therefore, we propose the following method to generate
features using Word2vec, as shown in Figure 2 and in
Algorithm 1. In our approach, we retrain the Word2vec model
to map each word to a feature, i.e., a feature vector of a single
dimension. Then we traverse every word in the training set
and use the retrained model to calculate a numerical value
for each word. The feature vector of one email is the union
of the Word2vec values of all the words in the vocabulary,
according to whether a word appears in this email or not.
The corresponding feature has a value of zero if this word

Algorithm 1 Generating feature vectors for the emails with
a single dimension to represent each word using a trained
Word2vec or Doc2vec model

Input: Dataset, a list of emails; w2v, a trained Word2vec
model, or a trained Doc2vec model
Output: featureSpace, a list of feature vectors for emails
procedure GENFEATUREVECTORS(w2v,Dataset)

features, Array
for each word ∈ Dataset do

features.append(word)
end for each
featureSpace, Array
for each email ∈ Dataset do

featureV ector, Vector
for each word ∈ features do

featureV alue, Double
if word ∈ email then

featureV alue = w2v.convert(word)
else

featureV alue = 0
end if
featureV ector.append(featureV alue)

end for each
featureSpace.append(featureV ector)

end for each
return featureSpace

end procedure



is not contained in the email. In this way, we can obtain a
feature space with each feature representing a different word,
and each email generates a feature vector representing all the
words appearing in it.

3) Doc2vec: While Word2vec computes a feature vector
for a given word in the email dataset, Doc2vec computes
the feature vector for a given email. It is a generalizing of
the Word2vec method. As shown in Figure 3, when using
Doc2vec as a feature extraction method, we first trained a
Doc2vec model by feeding all the emails in the training
dataset into the model. Secondly, we looped through the
training set to find all the unique words in it. The set of
unique words are the features in the feature space. Then for
each email, all the words that appeared in the email and in
the feature space are inputted to the trained Doc2vec model,
and the model would output a vector with a single dimension
for each of these words, which is essentially numeric values.
All of these numeric values are combined in the feature
vector of an email. In this way, the result from this approach
with Doc2vec is essentially the same as the result of the
second approach with Word2vec in terms of dimensionality;
the result from Doc2vec also has a feature for each word and
a vector for each email.

The other approach of using Doc2vec as a feature extrac-
tion method is more traditional but cannot be used to convert
the changes in the feature space to the problem space as
each feature in the feature space is not a word that appeared
in the email. As shown in the lower part of Figure 3, for
this approach, we fed each email in the training set to a
Doc2vec model and then inputted selected emails into the
trained model to get outputted feature vector for each email
with selected dimensions. We tested this approach in the
gray-box attack.

B. Generating Adversarial Perturbations in Feature Space

Our approach is based on successful adversarial perturba-
tions made to model input features. We employ the Projected
Gradient Descent (PGD) method as an attack method to
modify the feature values for desirable adversarial examples
in the feature domain. PGD method is considered as one of
the most powerful first-order adversaries [27]. PGD algorithm
iterative finds the disturbance with a constraint, dmax that
is the Euclidean distance to the original input indicating
the level of perturbations, to achieve the maximum loss in
classification [2]. In our approach, we run PGD over a set
of spam emails with repetition and generated adversarial
examples in the feature space. Then we test them to see
whether they could successfully evade email classifiers by
bypassing the detection. In our experiment, we used a SVM
classifier for generating adversarial examples in the feature
space. Therefore, the SVM classifier is considered as a white-
box case in our experimental evaluation.

C. Identifying Magic Words & Crafting Adversarial Emails

Adversarial emails are crafted by adding “magic words” to
the original spam emails. The “magic words” are identified
by intersecting the unique ham words with the “top words”.
Specifically, the unique ham words are the word that only
appeared in ham emails but never in spam emails. After
the PGD attack, observations are made to discover which
features are modified to the largest extent. We then select the
“top words” whose features have been changed the most by
the PGD attack. The changes are measured using a variance.
In our experiments, we used the top 100 words, which is
relatively efficient because the set is relatively small and
demonstrates a high success rate of bypassing classifiers.

D. White-Box, Gray-Box, Black-Box Attacks

We consider three scenarios, white-box, gray-box, and
black-box. White-box attacks assume that attackers have full
knowledge about the spam detection machine learning model,
such as its architecture, parameters, and hyperparameters.
Black-box attacks assume that attackers almost know nothing
about the spam detection machine learning model. At the
same time, gray-box attacks assume that attackers have
partial knowledge about the target spam detection model.

In the experiment, we use a local SVM classifier as an
example for the white-box attack. As shown in Figure 1, a
white-box attack has the following steps:

1) Train a local SVM classifier in the given feature space;
2) Conduct PGD attacks on the trained SVM classifier;
3) Identify “magic words” in the given dataset by observing

the changes in feature space made by successful PGD
attacks and unique ham words;

4) Craft adversarial emails by adding identified “magic
words” into all spam emails and then recalculate their
feature vector;

5) Test the trained SVM classifier with the feature vector
extracted from the adversarial emails.

In addition to white-box attacks, we also evaluated the
proposed attack methodology in gray-box and black-box
scenarios. As shown in Figure 1, in a black-box attack, we
evaluate the effectiveness of our attack on different classifiers
trained with feature extraction methods unknown to the PGD
attacks. Note that the types of classifiers are unknown to
the adversarial email crafting process. However, in a gray-
box attack, the model architecture may be known to the
attacker, for example, the same SVM model in this case,
but this victim SVM is trained using features generated by
a different feature extraction method. Specifically, its feature
space consists of Word2vec or Doc2vec vectors that have
200 dimensions to represent individual emails. We describe
the implementation and evaluation details for each scenario
in the following section.



IV. EVALUATION

A. Datasets
Several popular spam email datasets were utilized in this

study to evaluate effectiveness of and gain insights into the
different attacks:

1) Ling-Spam: We used 481 spam emails and
2,412 legitimate emails from the Ling-Spam dataset
(https://metatext.io/datasets/ling-spam-dataset) We extracted
46,852 features by using the TF-IDF method and 46,878
features using Word2vec and Doc2vec methods.

2) Tutorial-Spam: We used 1,897 spam emails and
4,150 ham emails from the Tutorial-Spam dataset
(https://spamassassin.apache.org/old/publiccorpus/) After
data extraction, the dataset contained 1,045 spam emails and
4,031 ham emails. We extracted 53,546 features using the
TF-IDF method and 53,784 features using Word2vec and
Doc2vec methods.

3) Enron-Spam: We used 1,500 spam emails and 3,672
ham emails from the first folder of the Enron-Spam dataset
(https://www.cs.cmu.edu/∼enron/). We got 32,569 features
from the TF-IDF method and 32,594 features from Word2vec
and Doc2vec methods.

For the emails we used, we removed all the HTML tags,
numbers, punctuation marks, and English stop words to
minimize the complexity of processing. We also converted
all the words to their lowercase forms and each paragraph
into a single line instead of multiple lines. In the last step of
data preprocessing, we conducted stemming on all the words.

Due to the complexity of the Enron-Spam dataset, we took
several additional steps; we removed all the special symbols
and non-Latin character sets; we also replaced all the URL
links in emails by the word ‘URL’.

B. Experiment Settings
1) Building SVM Classifiers: We randomly divided the

emails from the dataset into a training set and a testing set
with a ratio of 4:1. We trained SVM classifiers by using
the SecML library [28], and used its “estimate parameters”
method to find the parameters for the best classification
performance. The best parameter was searched for the penalty
factor with other parameters at their default settings. The
SVM classifier trained using TF-IDF showed a classification
accuracy of 98.92% with a 3.77% false-negative rate on
average across the three datasets. The SVM classifier using
Word2Vec showed a classification accuracy of 98.3% with a
4.81% false-negative rate on average across the three datasets.
The SVM classifier using Doc2vec showed a classification
accuracy of 98.04% with a 5.49% false-negative rate on
average across the three datasets.

Since the success of crafted spam emails to bypass detec-
tion is in effect similar to false negatives being generated, we
could observe the effectiveness of the attacks by comparing
their success rates to the false negative rates of the trained
classifiers.

2) PGD Attack for Adversarial Perturbations: For adver-
sarial perturbation, we used the projected gradient descent
(PGD) algorithm from the SecML library. With access to
a trained SVM classifier, we applied the PGD method to
modify 100 randomly selected spam emails from the test
dataset for our framework,. The dmax parameter in PGD
determines the success rate of flipping the classification by
the SVM classifier. We examined dmax in a large range
from 0 to 0.35 for the TF-IDF feature method and 0 to
13 for Word2vec and Doc2vec feature method, which could
reach a 100% success rate over the 100 spam emails being
processed, to understand its impact in experimentation. We
used l2 distance for the PGD algorithm in the experiments,
and eta was set to 0.01, max iter to 20, eps to 1e− 6.

3) White-Box, Gray-Box, and Black-Box Attacks: For
white-box attacks, we recalculated the feature vectors of the
crafted adversarial emails after adding the magic words to
attack the SVM classifier that was used to identify these
words. We examined the PGD attack success rate against
the SVM, the number of the “magic words”, and the “magic
words” attack success rate against the classifier for the attack
performance.

For gray-box attacks, we kept the SVM classifier as our
target model. However, we trained it using Word2vec and
Doc2vec features of 200 dimensions, a common choice of
using these NLP techniques. For Word2vec scenarios, we
first converted each word in the selected emails to a vector
of 200 dimensions using trained Word2vec models. Then,
we calculated the mean vector over all the words for an
email. For Doc2vec features, rather than extracting vectors
for each word in an email first, we converted each email
into a vector of 200 dimensions by using trained Doc2vec
models to induce a vector for each email to train the SVM
classifiers. Again, we crafted spam emails by adding the
“magic words” found by PGD attacks, with dmax at 0.06
(same as in the black-box attacks), which achieved one of the
best success rates in white-box attacks. As the performance
measure, we examined the success rate of the crafted spam
emails bypassing these new SVM classifiers.

In black-box attacks, the type of spam detection model
is different from the SVM classifier in a sense that in-
formation are unknown to the attacker. For each dataset,
we extracted three different sets of “magic words” through
the PGD attacks trained respectively by the three types of
TF-IDF, Word2vec, and Doc2vec features. We used these
“magic words” to craft adversarial spam emails to attack
four different classifiers (Decision Tree, Logistic Regression,
MLP, and ensemble classifier (ECLF)). These classifiers were
trained using TF-IDF, Word2vec with one feature for each
word, Doc2vec with one feature for each word, Word2vec
of 200 features for each email, Doc2vec of 200 features for
each email. To train those classification models, similarly, we
randomly selected 80% of the emails in each dataset as the



training set and examined the accuracy of those classifiers
on the testing set. To optimize these models, we used the
GridSearchCV method provided by scikit-learn [29] with the
default parameters. And last, we evaluated the success rate
of the crafted adversarial emails from PGD attacks bypassing
these different classifiers. verbose is set to 1, and n jobs is
set to -1 for GridSearchCV in our experiments.

C. Performance Metrics

We used the following several metrics in evaluation:
1) False Negative Rate: For the performance of a classi-

fier, this is the number of false negatives, i.e., spam emails
undetected, divided by the total of spam emails in the testing
dataset. This measures the chance of an original spam email
bypassing the classifier without being detected.

2) PGD Attack Success Rate: In white-box attacks, we
randomly selected 100 spam emails from the testing set
and then implemented the PGD algorithm to perturb their
features. The percentage of the resulting adversarial pertur-
bations of these 100 emails that can successfully bypass the
SVM classifier is PGD Attack Success Rate.

3) Number of Magic Words: This is the size of the “magic
words” set identified through the PGD attack on a SVM
classifier using one of the three feature extraction methods.

4) Magic Words Attack Success Rate (white-box attacks):
We crafted adversarial emails by adding the identified “magic
words” into all spam emails. Then we examined the percent-
age of these emails that can bypass the SVM classifier being
attacked by the PGD algorithm.

5) Success Rate of Adding Magic Words from PGD Attack
(gray-box and black-box attacks): We added the “magic
words” to all the spam emails in the testing set to evaluate
their success rate of bypassing a different classifier in gray-
box and black-box attacks.

These metrics are reported for white-box, gray-box, and
black-box attacks respectively. PGD Attack Success Rates,
Number of Magic Words, and Magic Words Attack Success
Rates (white-box attacks) are reported in Figures 4, 5, and
6. False Negative Rates of the SVM classifiers used for
white-box attacks are already reported in Section IV.B. False
Negative Rates and Success Rates of Adding Magic Words
from PGD Attack (gray-box and black-box attacks) are
reported in Tables I and II.

D. Results

1) White-Box Attacks: We focused on the following met-
rics to characterize the susceptibility of a model: the success
rate of PGD perturbation to model features, the set of “bad
words” being identified, the size of the “magic words”
set, and the success rate of causing the SVM classifier to
misclassify a spam email by adding these “magic words”.

As in Figure 4 for TF-IDF features, we varied dmax used
in the PGD perturbation, while the number of emails used
to find “magic words” was kept constant at 100. As dmax

increases, the success rate of perturbation increases too, as
expected. Significant changes made to the input features
certainly can move the instance into the territory of legitimate
email class. However, too much modification to features does
not guarantee that more useful “magic words” are found. So
the success rate of “magic words” to fool the SVM detector
does not always go up. This shows a more complicated
relationship between these two measures.

Overall, there is a positive correlation between the num-
ber of “magic words” and their capability to cause false
negatives. When dmax is small, this approach tends to
generate more “magic words” even though these words
are not effective in inducing false negatives. Likely such
small perturbations do not make changes to those features
that matter to the classification. When dmax is big enough,
successful perturbations can help to locate and modify those
“important” features. Adding to a spam email enough words
corresponding to these features has a good chance to flip its
classification label to legitimate.

Figure 4. Success rates of the PGD attack and the “magic words” attack as
well as the size of the resulting “magic words” set using TF-IDF features
on the SVM classifier using the Ling-Spam dataset in white-box attacks

Figure 5. Success rates of the PGD attack and the “magic words” attack as
well as the size of the resulting “magic words” set using Word2vec features
on the SVM classifier using the Ling-Spam dataset in white-box attacks

The observations discussed in the above are also present
in Figures 5 and 6 for Word2vec and Doc2vec features. They
are informative of the complex dynamics of such an attack.



Table I
RESULT OF GRAY-BOX ATTACKS AGAINST SVM CLASSIFIERS USING DIFFERENT FEATURES

Dataset Classifier Feature
(Dimentionality)

Classifier’s
Accuracy

False
Negative

Rate

Success Rate of Magic Words
from PGD Attack

TF-IDF Word2vec Doc2vec

Ling-Spam Word2vec (200) 98.96% 0% 24.21% 13.68% 16.84%
Doc2vec (200) 96.20% 1.05% 2.11% 3.16% 4.21%

Tutorial-Spam Word2vec (200) 96.52% 9.65% 19.69% 25.48% 17.37%
Doc2vec (200) 94.23% 13.07% 13.46% 13.85% 13.85%

Enron-Spam Word2vec (200) 93.91% 18.95% 94.12% 95.10% 92.48%
Doc2vec (200) 91.21% 15.38% 64.88% 75.58% 75.58%

Figure 6. Success rates of the PGD attack and the “magic words” attack as
well as the size of the resulting “magic words” set using Doc2vec features
on the SVM classifier using the Ling-Spam dataset in white-box attacks

From an attacker’s perspective, there is a sweet point of
adding a set of “magic words” into the spam emails that can
best balance the cost and gain in attacks. The attack certainly
wants to achieve a good chance to succeed, in terms of a
satisfying success rate of using a set of “magic words”. At
the same time, the more “magic words” are added, the more
effort it requires to hide or disguise these words. An attacker
would prefer using fewer “magic words” so that those crafted
spam emails would not be easily identified as spam by readers
after bypassing the spam filter. Attackers will need to seek
a trade-off between the number of “magic words” and the
success rate of bypassing by selecting an appropriate dmax
setting.

2) Gray-Box Attacks: Table I shows the accuracy and the
false-negative rate of the classifiers, as well as the success
rate of adversarial emails bypassing these classifiers. In
comparison, it can be observed that the attack success rates
in gray-box attacks are significantly lower than those in
the white-box experiment, e.g., for the Ling-Spam dataset.
Moreover, the attack success rates on models trained with
Word2vec are higher than those against models trained with
Doc2vec vectors. This is interesting, especially since the
models trained with Doc2vec have a lower accuracy. This
seems to suggest that the Doc2vec method is more resistant
to such attacks. Classifiers trained with Doc2vec are less

sensitive but more generalizable with a “more coarse” de-
cision boundary, and they are more robust in the presence of
adversarial changes.

3) Black-Box Attacks: The results are shown in Table
II. Based on the results, the decision tree classifier has the
weakest resistance to the attacks (12 times the weakest in 15
feature spaces). This could be because the decision tree takes
a step-wise approach in using the features. Compared to lo-
gistic regression, the decision is impacted more significantly
by a subset of features. Therefore, adversarial attacks on a
decision tree model can be “more effective” by focusing on
these significant features to navigate in the feature space. It
is worth noticing that the multi-layer perceptron classifiers
are also very susceptible to the attack even though they have
the highest accuracy and the lowest false-negative rate in
all feature spaces. Another interesting observation is that the
attack success rate against the ensemble classifier is always
in the middle, which indicates that the ensemble classifier
could potentially be used as a robust measure against the
attacks to prevent the worst-case scenario.

Attack transferability is demonstrated among these models
in the results. Adding a set of “magic words” which are iden-
tified from using TF-IDF, Word2vec, or Doc2vec methods in
PGD attacks can increase the chance of adversarial emails
bypassing a spam filter regardless of which type of feature it
is using. In other words, the success rate of such attacks is
higher than the false-negative rate of the classifier. It is worth
noticing that there are special cases where the chance of
bypassing the filter is not increased, or even decreased, which
happened in the Tutorial-Spam and Doc2vec(200) scenario.
The possible explanation for this decrease is Doc2vec(200)
was not used as the features in the white-box attack so that
using the “magic words” can make those adversarial emails
stand out as abnormal cases.

There are some other trends in the black-box attack results.
First, the success rates of magic word attacks seem to be
dependent on the dataset. For example, all the attacks are very
successful for the Enron-Spam dataset, with higher than 60%
success rates; while all the success rates of attacks are lower
than 20% for the Ling-Spam dataset. Second, the “magic
words” extracted from TF-IDF are more effective when the



Table II
RESULT OF BLACK-BOX ATTACKS AGAINST DIFFERENT CLASSIFIERS

Dataset Classifier Feature
(Dimentionality)

Classifier
Type

Classifier’s
Accuracy

False
Negative

rate

Success Rate of Magic Words
from PGD Attack

TF-IDF Word2vec Doc2vec

Ling-Spam

TF-IDF

Decision Tree 95.68% 13.68% 16.84% 15.79% 14.74%
Logistic Regression 99.31% 2.11% 37.89% 17.89% 21.05%
MLP 99.48% 1.05% 32.63% 17.89% 12.63%
ECLF 99.48% 1.05% 33.68% 17.89% 15.79%

Word2vec(single)

Decision Tree 96.03% 10.53% 73.68% 73.68% 73.68%
Logistic Regression 99.65% 2.11% 20.00% 16.84% 17.89%
MLP 99.83% 1.05% 42.11% 49.47% 17.89%
ECLF 99.65% 2.11% 32.63% 17.89% 16.84%

Doc2vec(single)

Decision Tree 94.99% 13.68% 100.00% 100.00% 100.00%
Logistic Regression 99.31% 0% 16.84% 13.68% 14.74%
MLP 98.62% 0% 12.63% 16.84% 17.89%
ECLF 99.31% 0% 16.84% 16.84% 17.89%

Word2vec(200)

Decision Tree 97.58% 2.11% 37.89% 33.68% 32.63%
Logistic Regression 98.79% 1.05% 32.63% 25.26% 25.26%
MLP 98.79% 2.11% 28.42% 13.68% 22.11%
ECLF 98.96% 1.05% 30.53% 15.79% 22.11%

Doc2vec(200)

Decision Tree 95.85% 12.63% 34.74% 34.74% 36.84%
Logistic Regression 96.72% 1.05% 4.21% 7.37% 3.16%
MLP 99.31% 1.05% 14.74% 16.84% 15.79%
ECLF 99.31% 1.05% 14.74% 16.84% 14.74%

Tutorial-Spam

TF-IDF

Decision Tree 93.92% 15.00% 17.31% 17.31% 17.69%
Logistic Regression 98.26% 6.92% 8.85% 8.85% 7.69%
MLP 98.89% 3.85% 9.23% 8.46% 6.15%
ECLF 98.34% 2.69% 8.46% 8.46% 7.31%

Word2vec(single)

Decision Tree 93.06% 14.34% 16.67% 16.67% 16.67%
Logistic Regression 97.79% 9.69% 10.85% 10.85% 10.47%
MLP 98.26% 2.33% 3.88% 2.33% 2,33%
ECLF 98.50% 5.04% 5.81% 5.81% 5.81%

Doc2vec(single)

Decision Tree 94.63% 12.69% 13.46% 13.46% 13.46%
Logistic Regression 98.26% 5.77% 5.77% 5.77% 5.38%
MLP 98.74% 2.69% 4.23% 2.69% 2.69%
ECLF 98.42% 3.85% 4.62% 3.85% 3.85%

Word2vec(200)

Decision Tree 93.68% 16.98% 20.85% 26.64% 23.55%
Logistic Regression 95.49% 11.96% 15.06% 16.60% 15.83%
MLP 97.55% 7.33% 10.42% 13.13% 12.36%
ECLF 96.68% 6.56% 8.11% 11.20% 10.42%

Doc2vec(200)

Decision Tree 91.00% 23.07% 18.08% 23.46% 22.31%
Logistic Regression 93.13% 16.92% 17.31% 18.46% 18.08%
MLP 97.31% 7.69% 6.92% 12.69% 12.69%
ECLF 97.08% 9.23% 7.31% 14.23% 13.85%

Enron-Spam

TF-IDF

Decision Tree 94.01% 11.11% 100.00% 100.00% 100.00%
Logistic Regression 98.84% 2.29% 83.66% 82.03% 77.78%
MLP 98.65% 2.61% 70.92% 72.55% 73.53%
ECLF 98.84% 2.29% 83.66% 82.03% 77.78%

Word2vec(single)

Decision Tree 95.17% 6.35% 100.00% 100.00% 100.00%
Logistic Regression 98.07% 1.00% 91.64% 97.32% 88.63%
MLP 98.16% 1.00% 86.96% 95.65% 95.65%
ECLF 98.55% 0.33% 93.31% 98.66% 95.65%

Doc2vec(single)

Decision Tree 94.98% 5.56% 100.00% 100.00% 100.00%
Logistic Regression 97.78% 5.88% 94.12% 96.41% 96.41%
MLP 98.36% 2.29% 89.54% 93.46% 94.77%
ECLF 98.74% 1.63% 94.44% 96.73% 97.39%

Word2vec(200)

Decision Tree 91.11% 24.51% 80.72% 85.62% 81.70%
Logistic Regression 94.30% 11.76% 79.74% 83.66% 80.39%
MLP 94.69% 16.67% 81.37% 82.68% 77.45%
ECLF 94.98% 14.71% 81.70% 84.64% 80.39%

Doc2vec(200)

Decision Tree 88.41% 19.06% 42.47% 66.55% 66.22%
Logistic Regression 89.76% 16.72% 64.21% 71.57% 76.58%
MLP 94.69% 8.03% 69.89% 74.24% 76.25%
ECLF 93.82% 9.70% 61.87% 73.24% 76.58%



false-negative rate of a classifier is relatively low, with high
sensitivity; the “magic words” extracted from Word2vec and
Doc2vec are more effective when the false-negative rate of a
classifier is relatively high, being more robust. So overall, the
SVM classifiers trained with Word2vec and Doc2vec features
have the potential to generate more sophisticated attacks with
the “magic words” identified through PGD attacks.

E. Additional Discussion on Defense

Some preliminary results suggested that feature selection
can be deployed as a defense mechanism against these
attacks. In one experiment on decision tree classifiers, the
ratio of selected features to original features was about 1:10.
The resulting decision tree classifiers showed a significant
decrease in the success rate of using these magic words.
In addition, reinforced model learning can be considered as
another defense measure. When “magic words” are identified,
we can use such information to retrain a classifier so it can
become more resistant to adversarial emails utilizing these
words.

V. CONCLUSION AND FUTURE WORK

This paper explored a new method of identifying “magic
words” using various feature extraction methods and in-
vestigated the effectiveness of crafted adversarial emails
injected with these “magic words” to fool spam filters on
three datasets. We generated different sets of “magic words”
based on the PGD attack on SVM classifiers using TF-
IDF, Word2vec, and Doc2vec as feature extraction methods.
We showed the effectiveness of such an attack on various
classification models including SVM, decision tree, logistic
regression, MLP, and ensemble classifiers.

Future research is certainly needed to make this line of
study more comprehensive. Additional experimentation with
other feature extraction methods and more datasets will gain
more insights into the effect of using different feature ex-
traction methods. Moreover, as briefly discussed, employing
advanced defense mechanisms is essential to understanding
how persistent such attacks can be.
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