

Malware Analysis & Classification
Midterm Progress

Advisors:

Dr. Matthew Elder, Johns Hopkins University Applied Physics Laboratory

William J. La Cholter, Johns Hopkins University Applied Physics Laboratory

Dr. Xiangyang Li, Johns Hopkins University

Team:

Karol Pierre, Johns Hopkins University

Yu Qiu, Johns Hopkins University

Cheng Xu, Johns Hopkins University

Alex Yang, Johns Hopkins University

Design & Analysis for Parallel Approach (Hybrid)

 These models are good for parsed data

Collect .json files of

different malware

samples from Cuckoo

Web Interface

Develop & run

script to parse file

for static features

Develop & run

script to parse file

for dynamic

features

Create Static

Dataset

Create Dynamic

Dataset

Feature

Engineering

Feature

Engineering

Perform K-means
clustering &

DBScan clustering

Perform K-means
clustering &

DBScan
clustering

Apply mean
shift algorithm

to find best
split

Apply mean
shift

algorithm to
find best split

Classification based on

Supervised learning

(Logistic Regression,

SVM, Deep Learning)

Classification based on

Supervised learning

(Logistic Regression,

SVM, Deep Learning)

Compare &

Contrast Results

Evaluate performance
of classifiers

Evaluate performance
of classifiers

Select

clustering

with best

performance

Select

clustering

with best
performance

Hybrid Approach

1. Collect .json files of malware samples (200 samples) from Cuckoo,
 https://cuckoo.cert.ee/analysis/
 https://sandbox.pikker.ee/
 Extract static data & dynamic data from these samples

2. Once dataset is collected and prepared, perform clustering using K-means &

DBscan (See Appendix A & B)
 Using two cluster algorithms provides options to choose the better

performer
3. Select clustering alg. with best performance to apply mean shift to find the best

split
4. Use Logistic Regression, SVM, and Deep Learning for supervised learning for

classification
5. Evaluate performance of classifiers
6. Use results from all three algorithms for both dynamic & static and compare and

contrast

 Evaluation & Result Analysis

 In progress . . . The objective is to compare results of Dynamic
 Analysis Approach with results from Static Analysis Approach and use
 those comparisons to showcase accuracy or the lack therof.

Current State:
 Completed first round of data collection, extraction, for 50 malware samples for static

dataset (automated process)
o Features: Focusing on PE Header Data: Entropy, Virtual Size, Data Size

 Completed first round of data collection, extraction, and cleaning for 50 malwares
samples for dynamic dataset --> needs to be cleaned

o Features: API Calls, processes, frequency of api calls
 Considering using network traffic

Future State

 Collect at least 200 more samples (& Repeat steps listed above)
 Clustering & performance evaluation for both dynamic and static dataset
 Training algorithms (Logistic Regression, SVM, & Deep Learning)
 Result Analysis

https://cuckoo.cert.ee/analysis/
https://sandbox.pikker.ee/

Appendices

Appendix A. JSON to CSV Data Parser Script

Appendix A. JSON to CSV Data Parser Script (cont)

Appendix B. Clean the raw .csv file and generate training/testing dataset

Malware Analysis & Classification

Annotated Outline

Advisors:

Dr. Matthew Elder, Johns Hopkins University Applied Physics Laboratory
William J. La Cholter, Johns Hopkins University Applied Physics Laboratory

Dr. Xiangyang Li, Johns Hopkins University

Team:

 Karol Pierre, Johns Hopkins University
Yu Qiu, Johns Hopkins University

Cheng Xu, Johns Hopkins University
Alex Yang, Johns Hopkins University

I. Abstract
To be determined . . .

II. Introduction

Problem Statement
Malware is constantly evolving in a fast-paced technological society. As a result, it is

imperative that analysis and detection of malware follows the same trend. Accurately
analyzing malicious software requires assessing similarities of varying malware types such as
worms compared to trojans, in order to determine if there are any relationships or trends.

Purpose of Study

Discover if there any underlying relationships or trends between different malware
families and/or malware types

Significance of Research
The ability to accurately detect specific malware signatures or features, will aid in the

mitigation and possible development of controls to prevent future strains of malicious
software from being able to infect systems

III. Literature Review & Problem Definition

Literature Review

A machine learning approach for Linux malware detection
Classification Problem: Malware Categorization
Type of Input: Goodware binaries, malware binaries
Type of Features: System calls
Algorithm Used: Naïve Bayes, Random Forest

A survey on malware detection using data mining techniques
Classification Problem: Benign vs Malware Categorization
Type of Input: Binary Code
Type of Features: Windows API Calls, N-grams of program
code, opcodes, interpretable strings
Algorithm Used: Clustering

An investigation of a deep learning based malware detection system

Classification Problem: Benign vs Malware Categorization
Type of Input: Malware assembled code extracted using
Unix's objdump and benign executables
Type of Features: Opcodes(frequency), Labels(benign or malware)
interpretable strings
Algorithm Used: Deep neural network

Automatic analysis of malware behavior using machine learning
Classification Problem: Behavior
Type of Input: Malware binaries
Type of Features: Changing registry keys or modifying system files
Algorithm Used: Scalable Clustering

HDM-Analyser: a hybrid analysis approach based on data mining techniques
for malware detection

Problem: Accuracy in detection
Challenges: Drawbacks of focusing on one type of analysis method
Solution: HDM Analyzer (uses learning model for prediction of code
decision making points and executions via API calls from PE & dynamic
extraction

Hybrid Analysis and Control of Malware
 Problem: Identification
 Challenges: Analysis Resistance Techniques - code packing, code
 overwriting, anti-tampering, anti-emulation checks
 Solution: Hybrid Analysis (analyze features of malware binaries and
 malware execution)
The importance of incorporating both techniques is that it provides the full
picture especially in cases where binary data is obfuscated. By analyzing the
malware sample and assessing that there is a packer/unpacker, as an example, we
gain insight into the complexity and functionality of that type of malware

Malware Detection using Machine Learning and Deep Learning
Classification Problem: Benign vs Malware Classification, Binary
Classification
Type of Input: disassembled benign executables, disassembled
malware binaries
Type of Features: Opcode frequencies, API calls
Algorithm Used: Random Forest

On the feasibility of Malware Authorship Attribution

Classification Problem: Benign vs Malware Classification,
Binary Classification
Type of Input: disassembled benign executables, disassembled
malware binaries
Type of Features: Opcode frequencies, API calls
Algorithm Used: Random Forest

When Coding Style Survives Compilation: De-anonymizing Programmers from
Executable Binaries

Classification Problem: Executable Binary Classification
Type of Input: Executable binaries
Type of Features: Features from decompiled executable binaries
Algorithm Used: Random Forest

Problem Definition

Current Expectations:

Main Focus:
 Through the use of dynamic and static analysis of malware samples we wil
be able to classify these samples into families via the application of Machine
Learning Algorithms

Sub-Focus:
 Accuracy of Malware Classification: the ability to best determine which
family each malicious software belongs to, in order to assist with best
methods for malware mitigation
 Dynamic vs Static Analysis: Comparison of classification results

IV. Technical Solution, Design and Analysis

 Technical Solution

Methods Considered
Design & Analysis for Dynamic Approach (1)

Figure 1: 2-Phase Malware Attribution Approach

 The flow chart in Figure 1 showcases the two-pronged approach that was first
considered. This approach was unsuccessful due to lack of available executable Linux
malware. There was a plethora of Linux malware binaries that could be used to obtain
hash values and attempt to label using the tools VirusTotal and AVclass. Collection and

labeling of data in this method proved to be unsuccessful due to the lack of compatibility
between VirusTotal and AVclass. As a result, phase two: extraction of features and
development of the dataset is no longer feasible. This forces a creation of a new
methodology to meet the same objective of collecting and labeling data and feature and
extraction and dataset development.

Methods Considered (cont)

Design & Analysis for Dynamic Approach (2)

Figure 2: Catak, FÖ. and Yazi, AF. ‘s API Calls Dataset Acquisition

The flow chart in Figure 2 depicts the dynamic approach that was used by Catak
and Yazi. This dynamic approach which includes the execution of malware in an isolated
environment, a sandbox (Cuckoo), produced a dataset that consists of API calls extracted
from monitoring the process executed while malware was executed. The derived
dataset was used to classify different malware into approximately 8 categories: Trojan,
Backdoor, Worms, Spyware, Adware, Dropper, Virus.

While this approach is great for pure data analysis, it would not be sufficient for

the desired end goal of comparing and contrasting results of Dynamic Analysis using the
Catak/Yazi dataset with the results of the Static Analysis using the Te-k/Malware dataset.
The dataset needs to contain the same malware samples in order to accurately assess and
measure the similarities, differences and level of accuracy of malware classification

Methods Considered (cont)

 Design & Analysis for Static Approach

Figure3: Desired Malware Attribution Approach

The flowchart in Figure 3 showcases our chosen approach for static analysis.
Using the dataset acquired from , https://github.com/Te-k/malware-classification , and by
conducting feature engineering on the dataset, the preprocessing of the dataset was
completed. By implementing the K-means algorithm for clustering, 5 clusters
(significance to be determined) were produced:

 In the process of interpreting cluster significance (Labeling based
 on splitting result)
 Final step before supervised learning to develop classification
 Performance of clustering is not guaranteed to be high

While this approach is also great for pure data analysis, it would not be sufficient

for the desired end goal of comparing and contrasting results of Dynamic Analysis using
the Catak/Yazi dataset with the results of the Static Analysis using the Te-k/Malware
dataset. The dataset needs to contain the same malware samples in order to accurately
assess and measure the similarities, differences and level of accuracy of malware
classification

https://github.com/Te-k/malware-classification

Methods Selected

Design & Analysis for Parallel Approach (Hybrid)

 These models are good for parsed data

Collect .json files of

different malware

samples from Cuckoo

Web Interface

Develop & run

script to parse file

for static features

Develop & run

script to parse file

for dynamic

features

Create Static

Dataset

Create Dynamic

Dataset

Feature

Engineering

Feature

Engineering

Perform K-means
clustering &

DBScan clustering

Perform K-means
clustering &

DBScan
clustering

Apply mean
shift algorithm

to find best
split

Apply mean
shift

algorithm to
find best split

Classification based on

Supervised learning

(Logistic Regression,

SVM, Deep Learning)

Classification based on

Supervised learning

(Logistic Regression,

SVM, Deep Learning)

Compare &

Contrast Results

Evaluate performance
of classifiers

Evaluate performance
of classifiers

Select

clustering

with best

performance

Select

clustering

with best
performance

V. Experimentation, Evaluation and Result Analysis

Hybrid Approach

1. Collect .json files of malware samples (200 samples) from Cuckoo,
 https://cuckoo.cert.ee/analysis/
 https://sandbox.pikker.ee/
 Extract static data & dynamic data from these samples

2. Once dataset is collected and prepared, perform clustering using K-means &
DBscan (See Appendix A & B)

 Using two cluster algorithms provides options to choose the better
performer

3. Select clustering alg. with best performance to apply mean shift to find the best
split

4. Use Logistic Regression, SVM, and Deep Learning for supervised learning for
classification

5. Evaluate performance of classifiers
6. Use results from all three algorithms for both dynamic & static and compare and

contrast

Evaluation & Result Analysis

 In progress . . . The objective is to compare results of Dynamic
 Analysis Approach with results from Static Analysis Approach and use
 those comparisons to showcase accuracy or the lack therof.

VI. Conclusion
To be determined . . .

VII. References

Alrabaee, Saed, et al. "On the feasibility of malware authorship attribution”.
International Symposium on Foundations and Practice of Security. Springer,
Cham, 2016.

Asmitha, K A, and P Vinod. “A Machine Learning Approach for Linux Malware
Detection.” 2014 International Conference on Issues and Challenges in
Intelligent Computing Techniques (ICICT), 2014,
doi:10.1109/icicict.2014.6781387.

Caliskan, Aylin, et al. "When coding style survives compilation: De-anonymizing
programmers from executable binaries." arXiv preprint
arXiv:1512.08546 (2015).

Eskandari, Mojtaba, Zeinab Khorshidpour, and Sattar Hashemi. "HDM-Analyser: a
 hybrid analysis approach based on data mining techniques for malware
 detection." Journal of Computer Virology and Hacking Techniques 9.2 (2013):
 77-93.

https://cuckoo.cert.ee/analysis/
https://sandbox.pikker.ee/

Microsoft. "PE Format."WIndows Dev Center. https://docs.microsoft.com/en-
 us/windows/win32/debug/pe-format#file-headers
Rathore, Hemant, et al. "Malware Detection Using Machine Learning and Deep

Learning." International Conference on Big Data Analytics. Springer, Cham,
2018.

Rieck, Konrad, et al. “Automatic Analysis of Malware Behavior Using Machine
Learning.” Journal of Computer Security, vol. 19, no. 4, 2011, pp. 639–668.,
doi:10.3233/jcs-2010-0410.

Roundy, Kevin A., and Barton P. Miller. "Hybrid analysis and control of
 malware." International Workshop on Recent Advances in Intrusion Detection.
 Springer, Berlin, Heidelberg, 2010.
Sewak, Mohit, et al. “An Investigation of a Deep Learning Based Malware Detection

System.” Proceedings of the 13th International Conference on Availability,
Reliability and Security - ARES 2018, 2018, doi:10.1145/3230833.3230835.

Yanfang Ye, Tao Li, Donald Adjeroh, and S. Sitharama Iyengar. 2017. A survey on
malware detection using data mining techniques. ACM Comput. Surv. 50, 3,
Article 41 (June 2017), 40 pages. DOI: http://dx.doi.org/10.1145/3073559

Yazı, Ahmet & Catak, Ferhat Ozgur & Gul, Ensar. (2019). Classification of
Methamorphic Malware with Deep Learning (LSTM).
10.1109/SIU.2019.8806571.

https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
http://dx.doi.org/10.1145/3073559

VIII. Appendices

Appendix A. JSON to CSV Data Parser Script

Appendix A. JSON to CSV Data Parser Script (cont)

Appendix B. Clean the raw .csv file and generate training/testing dataset

