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Hybrid Approach 

1. Collect .json files of malware samples (200 samples) from Cuckoo,  
 https://cuckoo.cert.ee/analysis/  
  https://sandbox.pikker.ee/  
 Extract static data & dynamic data from these samples 

 
2. Once dataset is collected and prepared, perform clustering using K-means & 

DBscan (See Appendix A & B)  
 Using two cluster algorithms provides options  to choose the better 

performer  
3. Select clustering alg. with best performance to apply mean shift to find the best 

split 
4. Use Logistic Regression, SVM, and Deep Learning for supervised learning for 

classification 
5. Evaluate performance of classifiers  
6. Use results from all three algorithms for both dynamic & static and compare and 

contrast 
 

 Evaluation & Result Analysis  

  In progress . . . The objective is to compare results of Dynamic  
  Analysis Approach with results from Static Analysis Approach and use  
  those comparisons to showcase accuracy or the lack therof.  

 
 

Current State:  
 Completed first round of data collection, extraction, for 50 malware samples for static 

dataset (automated process)  
o Features: Focusing on PE Header Data: Entropy,  Virtual Size, Data Size 

 Completed first round of data collection, extraction, and cleaning for 50 malwares 
samples for dynamic dataset --> needs to be cleaned 

o Features: API Calls, processes, frequency of api  calls 
 Considering using network traffic 

 
Future State 

 Collect at least 200 more samples (& Repeat steps listed above) 
 Clustering & performance evaluation for both dynamic and static dataset  
 Training algorithms (Logistic Regression, SVM, & Deep Learning)  
 Result Analysis 

 
 
 
 
 
 

https://cuckoo.cert.ee/analysis/
https://sandbox.pikker.ee/


Appendices  
  
Appendix A. JSON to CSV Data Parser Script 
 

 

 

 

 

 

 

 

 

 



Appendix A. JSON to CSV Data Parser Script (cont) 

 

 

 



Appendix B. Clean the raw .csv file and generate training/testing dataset 
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I. Abstract  
To be determined . . .  
 

II. Introduction  
 

Problem Statement  
Malware is constantly evolving in a fast-paced technological society. As a result, it is 

imperative that analysis and detection of malware follows the same trend. Accurately 
analyzing malicious software requires assessing similarities of varying malware types such as 
worms compared to trojans, in order to determine if there are any relationships or trends. 

   
Purpose of Study   

Discover if there any underlying relationships or trends between different malware 
families and/or malware types  

 

Significance of Research   
The ability to accurately detect specific malware signatures or features, will aid in the 

mitigation and possible development of controls to prevent future strains of malicious 
software from being able to infect systems  

 

III. Literature Review & Problem Definition   
 

Literature Review  
 

A machine learning approach for Linux malware detection   
Classification Problem: Malware Categorization   
Type of Input: Goodware binaries, malware binaries   
Type of Features: System calls   
Algorithm Used: Naïve Bayes, Random Forest  
  

A survey on malware detection using data mining techniques  
Classification Problem: Benign vs Malware Categorization  
Type of Input: Binary Code   
Type of Features: Windows API Calls, N-grams of program 
code, opcodes, interpretable strings  
Algorithm Used: Clustering  

  
An investigation of a deep learning based malware detection system   

Classification Problem: Benign vs Malware Categorization  
Type of Input: Malware assembled code extracted using 
Unix's objdump and benign executables  
Type of Features: Opcodes(frequency), Labels(benign or malware) 
interpretable strings  
Algorithm Used: Deep neural network   
  

  
 
 



Automatic analysis of malware behavior using machine learning  
Classification Problem: Behavior  
Type of Input: Malware binaries  
Type of Features: Changing registry keys or modifying system files  
Algorithm Used: Scalable Clustering  

HDM-Analyser: a hybrid analysis approach based on data mining techniques 
for malware detection  

Problem: Accuracy in detection  
Challenges: Drawbacks of focusing on one type of analysis method  
Solution: HDM Analyzer (uses learning model for prediction of code 
decision making points and executions via API calls from PE & dynamic 
extraction 

Hybrid Analysis and Control of Malware  
 Problem: Identification  
 Challenges: Analysis Resistance Techniques - code packing, code 
 overwriting, anti-tampering, anti-emulation checks 
 Solution: Hybrid Analysis (analyze features of malware binaries and 
 malware execution) 
The importance of incorporating both techniques is that it provides the full 
picture especially in cases where  binary data is obfuscated. By analyzing the 
malware sample and assessing that there is a packer/unpacker, as an example, we 
gain insight into the complexity and functionality of that type of malware   

Malware Detection using Machine Learning and Deep Learning   
Classification Problem: Benign vs Malware Classification, Binary 
Classification  
Type of Input: disassembled benign executables, disassembled 
malware binaries  
Type of Features: Opcode frequencies, API calls  
Algorithm Used: Random Forest  

  
On the feasibility of Malware Authorship Attribution  

Classification Problem: Benign vs Malware Classification, 
Binary Classification  
Type of Input: disassembled benign executables, disassembled 
malware binaries  
Type of Features: Opcode frequencies, API calls  
Algorithm Used: Random Forest  

  
When Coding Style Survives Compilation: De-anonymizing Programmers from 
Executable Binaries  

Classification Problem: Executable Binary Classification  
Type of Input: Executable binaries  
Type of Features: Features from decompiled executable binaries  
Algorithm Used: Random Forest  



Problem Definition   
 

Current Expectations:   

Main Focus:   
 Through the use of dynamic and static analysis of malware samples we wil 
be able to classify these samples into families via the application of Machine 
Learning Algorithms   
 

Sub-Focus:   
 Accuracy of Malware Classification: the ability to best determine which 
family each malicious software belongs to, in order to assist with best 
methods for malware mitigation   
 Dynamic vs Static Analysis: Comparison of classification results  

  
 
 

IV. Technical Solution, Design and Analysis  
  

 Technical Solution   
 

Methods Considered  
Design & Analysis for Dynamic Approach (1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

Figure 1: 2-Phase Malware Attribution Approach  

  
        The flow chart in Figure 1 showcases the two-pronged approach that was first 
considered. This approach was unsuccessful due to lack of available executable Linux 
malware. There was a plethora of Linux malware binaries that could be used to obtain 
hash values and attempt to label using the tools VirusTotal and AVclass. Collection and 



labeling of data in this method proved to be unsuccessful due to the lack of compatibility 
between VirusTotal and AVclass. As a result, phase two: extraction of features and 
development of the dataset is no longer feasible. This forces a creation of a new 
methodology to meet the same objective of collecting and labeling data and feature and 
extraction and dataset development.  
 

Methods Considered (cont) 
 

Design & Analysis for Dynamic Approach  (2) 
 

  
Figure 2: Catak, FÖ. and Yazi, AF. ‘s API Calls Dataset Acquisition  

 

The flow chart in Figure 2 depicts the dynamic approach that was used by Catak 
and Yazi. This dynamic approach which includes the execution of malware in an isolated 
environment, a sandbox (Cuckoo), produced a dataset that consists of API calls extracted 
from monitoring the process executed while malware was executed. The derived 
dataset was used to classify different malware into approximately 8 categories: Trojan, 
Backdoor, Worms, Spyware, Adware, Dropper, Virus.   

  
While this approach is great for pure data analysis, it would not be sufficient for 

the desired end goal of comparing and contrasting results of Dynamic Analysis using the 
Catak/Yazi dataset with the results of the Static Analysis using the Te-k/Malware dataset. 
The dataset needs to contain the same malware samples in order to accurately assess and 
measure the similarities, differences and level of accuracy of malware classification  

 
 
 
 



Methods Considered (cont) 
 

 Design & Analysis for Static Approach   

  

Figure3: Desired Malware Attribution Approach   
 

The flowchart in Figure 3 showcases our chosen approach for static analysis. 
Using the dataset acquired from , https://github.com/Te-k/malware-classification , and by 
conducting feature engineering on the dataset, the preprocessing of the dataset was 
completed. By implementing the K-means algorithm for clustering, 5 clusters 
(significance to be determined) were produced:   

 In the process of interpreting cluster significance (Labeling based 
 on splitting result)  
 Final step before supervised learning to develop classification   
 Performance of clustering is not guaranteed to be high   

 
While this approach is also great for pure data analysis, it would not be sufficient 

for the desired end goal of comparing and contrasting results of Dynamic Analysis using 
the Catak/Yazi dataset with the results of the Static Analysis using the Te-k/Malware 
dataset. The dataset needs to contain the same malware samples in order to accurately 
assess and measure the similarities, differences and level of accuracy of malware 
classification  

 
 
 
 
 
 

 

https://github.com/Te-k/malware-classification


Methods Selected  
  

Design & Analysis for Parallel Approach  (Hybrid) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 

    These models are good for parsed data  
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V. Experimentation, Evaluation and Result Analysis  
 

Hybrid Approach 

1. Collect .json files of malware samples (200 samples) from Cuckoo,  
 https://cuckoo.cert.ee/analysis/  
  https://sandbox.pikker.ee/  
 Extract static data & dynamic data from these samples 

2. Once dataset is collected and prepared, perform clustering using K-means & 
DBscan (See Appendix A & B)  

 Using two cluster algorithms provides options to choose the better 
performer  

3. Select clustering alg. with best performance to apply mean shift to find the best 
split 

4. Use Logistic Regression, SVM, and Deep Learning for supervised learning for 
classification 

5. Evaluate performance of classifiers  
6. Use results from all three algorithms for both dynamic & static and compare and 

contrast 
 

Evaluation & Result Analysis  

 In progress . . . The objective is to compare results of Dynamic   
 Analysis Approach with results from Static Analysis Approach and use   
 those comparisons to showcase accuracy or the lack therof.  

  

VI. Conclusion  
To be determined . . .  
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VIII. Appendices  
  
Appendix A. JSON to CSV Data Parser Script 

 

 

 

 

 

 

 

 

 

 



Appendix A. JSON to CSV Data Parser Script (cont) 

 

 



Appendix B. Clean the raw .csv file and generate training/testing dataset 

 

 

 




