
Crafting Adversarial Email Content against Machine Learning
Based Spam Email Detection

Chenran Wang∗
cwang162@alumni.jh.edu
Johns Hopkins University
Baltimore, Maryland, USA

Danyi Zhang∗
dzhang66@alumni.jh.edu
Johns Hopkins University
Baltimore, Maryland, USA

Suye Huang∗
shuang93@alumni.jh.edu
Johns Hopkins University
Baltimore, Maryland, USA

Xiangyang Li
xyli@jhu.edu

Johns Hopkins University
Baltimore, Maryland, USA

Leah Ding
ding@american.edu
American University
Washington, DC, USA

ABSTRACT
While machine learning based spam detectors have proven useful,
spammers are learning to bypass the detectors by modifying their
email content. Adversarial attacks onmachine learningmodels have
been observed in domains such as image classification. Applying
such adversarial attack algorithms to craft spam emails to evade
spam email detectors, however, has limitations. Such algorithms
generate adversarial perturbations in the feature space. Different
from image data, translating the adversarial perturbations from the
feature space to text formats, as in emails, changes the effectiveness
of the adversarial perturbations. It can reduce the attack success
rate in the case of spam email detection. In this paper, we study the
feasibility of adversarial attacks on machine learning based spam
detectors and propose two novel text crafting methods leveraging
adversarial perturbations generated by the adversarial example
generation algorithms to improve the attack effectiveness. One
method tries to approximate the feature values and the other adds
special words to original emails. In experimentation, we use PGD
as an example to demonstrate and compare the effectiveness of
our attack methods on spam email detectors. We also examine the
transferability of the proposed attack methods on different machine
learning models.

CCS CONCEPTS
• Security and privacy→ Phishing; • Computing methodolo-
gies → Machine learning.
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1 INTRODUCTION
Machine learning classification models have been employed for
spam email detection, such as Support Vector Machine (SVM) mod-
els [9] [16], Bayesian classification models [4] [18], KNN [10], and
Decision Tree Boosting [7]. While machine learning models differ,
their basic working pipelines are similar. Essentially, a set of fea-
tures based on words and phrases are extracted from the emails,
and this set of features are used as the representative input to the
machine learning models for detection.

With the recent research of adversarial attacks on machine learn-
ing models, spam detectors face new security risks introduced by
their machine learning based classifiers. In a successful adversarial
attack, the targeted classifier could be misled by an input that is cre-
ated by adding a slight perturbation or disturbance to the original
feature input.

Adversarial attacks on machine learning models have been stud-
ied in domains such as image classification [11][15] [5] and Voice
Processing Systems [6] [20] [17]. Different adversarial attack al-
gorithms have been proposed, such as Fast Gradient Sign Method
(FGSM) [11], Projected Gradient Descent (PGD) [15], and Carlini
andWagner Attacks (CW) [5]. Such adversarial attacks have mainly
focused on computer vision and pattern recognition systems that
utilize deep learning models. In contrast, less attention is given to
computer security applications that process other types of data,
such as the text content of an email used by spam filters. Classical
machine learning models deserve careful examination for their re-
sistance to such adversarial attacks. Moreover, the translation of
an adversarial attack in the feature space back to a realistic event
is critical to completing a realistic attack process.

In this paper, we use spam email detection as an example to study
the adversarial attacks on text classification models. Specifically,
we make the following contributions:

• We showed that even if adversarial perturbations are gener-
ated successfully in the feature space, e.g., the TF-IDF (term
frequency–inverse document frequency) representation of
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an email in this study, further effort is needed to construct
the attack in its valid form, e.g., text in a spam email, with-
out degrading the attack effectiveness. Different from image
data, translating perturbed values in terms of TF-IDF values
from the feature space to text changes the effectiveness of
the adversarial perturbations. And, if not carefully done, it
may reduce the attack success rate in the case of spam email
detection.

• We proposed two methods to craft spam email content by
analyzing the TF-IDF features of adversarial perturbations.
The first method approximates the desirable TF-IDF values
by adjusting the occurrences of each word of an email. The
second method inserts a set of "special words", that are iden-
tified by examining the generating adversarial perturbations,
to a spam email. We compared the two methods in experi-
mentation to show that the second method is more efficient
in evading spam detectors.

• We studied the effectiveness of black-box attacks on spam
detectors, where the target spam detector employs different
classification models. We examined the transferability of the
attacks generated from one classification model, i.e., SVM
classifier, to other classifiers, including KNN, decision tree,
and logistic regression models. With the experimentation
using the Enron-Spam email dataset, we found that the ad-
versarial email content crafted against one model can be
transferred to different models.

2 RELATEDWORK
Wittel and Wu [19] categorized the attacks on spam email detectors
into three types, tokenization attacks where spammers intend to
disturb tokenization of the email content by splitting or modify-
ing features, such as inserting extra spaces in the middle of the
words; obfuscation attacks where the email content is obscured
from the detector using encoding or misdirection; and statistical
attacks where spammers attempt to skew the message’s statistics to
distract the detector. An example of a statistical attack is proposed
in [14], where the attacks were developed and tested against two
types of statistical spam detectors: maximum entropy and naive
Bayes filters. In this paper, active attacks have much better attack
results as the attacker is allowed to send test messages to the fil-
ter to determine whether or not they are labeled as spam. Other
examples of statistical attack include [12] [13].

In this paper, we focus on crafting spam email content based on
adversarial perturbations made in the feature space. Adversarial
attack algorithms have been studied against image classification
models, rather than text classification models. Different from image
data, translating the adversarial perturbations from the feature
space to text formats changes the effectiveness of the adversarial
perturbations, which reduces the attack success rate in the case
of the spam email detection. We address such limitations by two
novel text crafting methods leveraging adversarial perturbations
generated by the adversarial example algorithms. We use PGD as
an example to demonstrate the effectiveness of our attack methods
on spam email detectors.

3 ATTACK METHODOLOGY
In Figure 1, the TF-IDF vector was calculated for every email. Then
we trained and validated different classifiers with these TF-IDF
features as inputs. PGD was run on the trained SVM classifier to
perturb a subset of randomly selected spam emails, which created
a set of adversarial perturbations in forms of TF-IDF vectors. Based
on these vectors, we applied two methods to craft the adversarial
emails, i.e., determining their words accordingly. Once done, we
recalculated the TF-IDF vectors of the resulting emails. At last,
white-box and black-box attacks were launched by feeding the TF-
IDF vectors, before and after crafting the adversarial emails, to the
trained classifiers to evaluate their susceptibility.

3.1 Generating Adversarial Perturbations in
the Feature Space

TF-IDF Calculation
Calculating TF-TDF of words appearing in an email is a common
method to vectorize textual information into numeric values:

𝑇𝐹𝑖, 𝑗 =
𝑁𝑖, 𝑗∑
𝑘 𝑁𝑘,𝑗

𝐼𝐷𝐹𝑖 = log
|𝐷 | + 1

| 𝑗 : 𝑡𝑖 ∈ 𝑑 𝑗 | + 1
+ 1

(1)

where 𝑁𝑖, 𝑗 is the number of times word 𝑡𝑖 appears in email 𝑑 𝑗 ; |𝐷 |
is the total number of email in the corpus; | 𝑗 : 𝑡𝑖 ∈ 𝑑 𝑗 | indicates the
number of emails containing the term 𝑡𝑖 . The IDF term is smoothed
for those common words appearing in every document. The higher
frequency of a word in a particular file and the lower file frequency
of the word in the entire file collection results in a higher TF-IDF
value, which reflects the significance of the word or feature used in
the classification model.
Support Vector Machine (SVM) Model
A SVM classifier expands the original data dimensions to separate
the samples in the transformed high-dimensional space [8]. If the
number of features is much larger than the number of samples, a
logistic regression or linear kernel is recommended to avoid over-
fitting the SVM model. Our experimentation had about 100,000
TF-IDF features with about 50,000 samples, so we chose a linear
kernel. In addition, in training, the larger the penalty coefficient
being used, the greater the penalty for the wrong sample.
Projected Gradient Descent (PGD)
This iterative algorithm finds the disturbance with a constraint,
𝑑𝑚𝑎𝑥 that is the Euclidean distance to the original input, to achieve
themaximum loss in classification [15]. In our approachwe ran PDG
over a set of spam emails randomly selected that each generated
an adversarial example in a TF-IDF vector. Then we test them to
see whether they can successfully evade the classifiers.

3.2 Crafting the Content of Adversarial Emails
Aided by the adversarial TF-IDF vector, the aim of this paper is to
create valid spam emails, in forms of a set of words. This is critical
for spammers to achieve their goal in the real world.
Method 1 - TF-IDF Approximation
In this method, we try to determine the term frequencies in an
email to make their TF-IDF vales as close as possible to those of a
successful adversarial example that can bypass the SVM classifier.



Figure 1: The Workflow of Generating Adversarial Perturbations, Crafting Adversarial Emails, and Conducting Attacks

We only considered those TF-IDF features significant enough and
extracted the 8700 feature words of the largest TF-IDF values for
use.

Here we use 𝐴, 𝐵, 𝐶 ... to represent a set of words targeted for
their higher TF-IDF values, and X to represent the set of all remain-
ing words with lower significance in their TF-IDF values in the
adversarial examples generated by PGD. Our goal is to approximate
the resulting TF-IDF values, focusing on the targeted words, of the
crafted email to those in the adversarial perturbations as well as we
can. Let 𝑎 be the TF-IDF value of word𝐴 in the adversarial example,
similarly for the words 𝐵, 𝐶 ... and 𝑋 . Here, we define the 𝐹𝐴 , 𝐹𝐵 ,...
as the number of word 𝐴, 𝐵 and so on. However, note that 𝐹𝑋 is
actually the total number of all the words in 𝑋 .

𝐹𝐴

𝐹𝐴 + 𝐹𝐵 + 𝐹𝐶 + ... + 𝐹𝑋
∗ 𝐼𝐷𝐹𝐴 = 𝑎

𝐹𝐵

𝐹𝐴 + 𝐹𝐵 + 𝐹𝐶 + ... + 𝐹𝑋
∗ 𝐼𝐷𝐹𝐵 = 𝑏

𝐹𝐶

𝐹𝐴 + 𝐹𝐵 + 𝐹𝐶 + ... + 𝐹𝑋
∗ 𝐼𝐷𝐹𝐶 = 𝑐

· · ·

(2)

Then, using 𝑏1, 𝑐1,... to simplify the terms, we get the TF ratio
between word 𝐴 and every other word:

𝐹𝐵 =
𝑏

𝐼𝐷𝐹𝐵
∗ 𝐼𝐷𝐹𝐴

𝑎
∗ 𝐹𝐴 = 𝑏1 ∗ 𝐹𝐴

𝐹𝐶 =
𝑐

𝐼𝐷𝐹𝐶
∗ 𝐼𝐷𝐹𝐴

𝑎
∗ 𝐹𝐴 = 𝑐1 ∗ 𝐹𝐴

· · ·

(3)

Later we can decide on a specific word 𝐴, called the "anchor"
word, which is associated with a particular TF-IDF feature value in
the adversarial example, to derive the number of every other word.
We can further obtain the following equation:

𝐹𝐴

𝐹𝐴 + 𝐹𝐵 + 𝐹𝐶 + · · · + 𝐹𝑋
=

𝑎

𝐼𝐷𝐹𝐴
(4)

⇒ 𝐹𝐴

𝐹𝐴 + 𝑏1 ∗ 𝐹𝐴 + 𝑐1 ∗ 𝐹𝐴 + · · · + 𝐹𝑋
=

𝑎

𝐼𝐷𝐹𝐴
(5)

⇒ 1
(1 + 𝑏1 + 𝑐1 + · · · ) + 𝐹𝑋

𝐹𝐴

=
𝑎

𝐼𝐷𝐹𝐴
(6)

We need to simplify the calculation for words in 𝑋 while approx-
imating the TF-IDF values of the significant words as much as we
can. We chose to have the same number of occurrences, denoted
as 𝑦, for each word in 𝑋 in the email. So we have 𝐹𝑋 = |𝑋 | ∗ 𝑦. We
finally have the following:

𝑦

𝐹𝐴
=
𝐼𝐷𝐹𝐴

𝑎 |𝑋 | − (1 + 𝑏1 + 𝑐1 + · · · )
|𝑋 | (7)

At this point, the problem changes to selecting 𝑦 and 𝐹𝐴 , both
integers as numbers of words, so that they satisfy the above equa-
tion as close as possible. We limited the search of 𝑦 to 0-1000 and
𝐹𝐴 to 0-5000. Once the best numbers of 𝑦 and 𝐹𝐴 are determined
we can calculate the term frequency of each target feature or each
remaining word accordingly.

The last question is, given an adversarial example, which word
should be the anchor word 𝐴? We tried different options, using the
largest or smallest TF-IDF value, different TF-IDF quantile points,
or the average TF-IDF value. This choice will affect the total number
of words, i.e., the size of the crafted email. We found that when the
25th-quantile point is used, the success rate of adversarial emails is
the highest.

Method 2 - Adding Special Words
In this method, we try to modify an original spam email by adding
words that may change its classification. For this purpose, we ex-
amined how much the TF-IDF values were modified by the PGD
algorithm to measure the importance of each word. In doing so,
we only looked at successful adversarial perturbations, those being
classified as ham emails.

We compared the TF-IDF values of samples to their original ones
and identified the following word feature sets:



• Top 100 features (set 1): The 100 features with the largest
value changes by PGD. This is based on the variance calcula-
tion for each word with the mean at 0 since we are interested
in those word changed the most.

• Disappearing features (set 2): The set of words whose TF-IDF
values are ever reduced to 0 from their original values.

• Appearing features (set 3): The set of words whose TF-IDF
values are ever increased to non-zero from 0.

• Unique ham features (set 4): Words that only appear in ham
emails.

• Unique spam features (set 5): Words that only appear in spam
emails.

Then we found their intersection sets:
• Intersection (1,4): not empty (set of "magic words")
• Intersection (1,5): empty
• Intersection (1,2): empty
• Intersection (1,3): set 1

There are several interesting observations. The top 100 features
of significant changes through the PGD process are not unique
spam words, nor those words being removed. These features are
all words being added and some of them are unique ham words.
We call the words in Intersection (1,4) "magic words". We suspect
that these words have special effect in adversarial attacks. And we
added these special words to spam emails to study their impact on
classification.

4 EXPERIMENTAL EVALUATION

4.1 Experiment Settings

Dataset
We used 17,171 spam emails and 16,545 normal emails from the
Enron-Spam dataset [1]. Messages sent by the owner of the mailbox,
all HTML tags, the headers of the messages, and spam messages
written in non-Latin character sets have been excluded before anal-
ysis. We removed all the numbers and special symbols as well as
all the English stop words in emails to reduce the complexity of
subsequent processing. Furthermore, as a common measure, we
aggregated words through stemming. Lastly, we replaced the URL
link in each email by the word ‘URL’.

Building SVM Classifiers
We randomly divided the emails into a training set and test set
based on the ratio of 4:1. We directly called the TF-IDF method in
the Sklearn library [2]. It resulted in over 100,000 feature words.
Training the SVM classifier was in the SecML library[3] in order to
use its PGD solver. Calling the method "best_estimate()" selected
the best penalty factor at 10. The SVM classifier can achieve 99.08%
accuracy in testing with 1.11% false positive rate and 0.47% false
negative rate. This means that fewer than one spam email can
bypass the SVM classifier without being flagged.

Generating Adversarial Perturbations
In order to generate adversarial perturbations, we chose the pro-
jected gradient descent (PGD) algorithm in the SecML library. We
randomly selected 100 spam emails from the test dataset since we
were interested in inducing detection misses. The larger the 𝑑𝑚𝑎𝑥

setting, the greater the possibility of success of changing its classi-
fication. Therefore, we select three different settings of 0.09, 0.07,
and 0.05.

White-box and Black-box Attacks
For white-box attacks, we fed the TF-IDF vectors extracted from
the crafted adversarial emails to the trained SVM classifier. We
evaluated the attack success rate against the trained SVM classifier.

For black-box attacks, we fed the TF-IDF vectors extracted from
the crafted adversarial emails to three new spam detectors to eval-
uate the attack success rate against different classification models
that we do not have access to when crafting the adversarial emails.
Specifically, we tested KNN, Decision Tree, and Logistic Regression
classification models. To train those classification models, we ran-
domly selected 80% of the emails from the Enron-Spam dataset as
the training set, and check the accuracy of those classifiers on the
test set. We again called the method "best_estimate()" for the best
model parameters:

• KNN Model: 𝐾 is set at 160.
• Decision Tree Model: The tree depth is 55.
• Logistic Regression Model: alpha is set to 1𝑒 − 6 and regular-
izer is “l2”.

We tested the attack success rate against those three models to
evaluate the attack transferability.

4.2 Results

White-box Attacks with TF-IDF Approximation
The attack performance on the SVM classifier is shown for PGD
and TF-IDF approximation respectively in Table 1. Note that the
denominator in the last column is the number of successful adver-
sarial perturbations generated by PGD. For example, when 𝑑𝑚𝑎𝑥
is set at 0.09 for PGD, 91 of the 100 generated adversarial samples
successfully flipped their classifications to ham. Then, TF-IDF ap-
proximation was done on the successful adversarial examples and
we experimented with 3 choices of target features: top 500 features,
top 1000 features, and top 5000 features with regard to their TF-IDF
values. When we used 500 top features for TF-IDF approximation,
75 of the 91 adversarial emails did not raise an alert.

As shown, when 𝑑𝑚𝑎𝑥 increases, the attack success rate in-
creases too. Moreover, as the number of target features in TF-IDF
approximation increases, the attack success rate becomes higher.
This is because the TF-IDF values of crafted emails are closer to
the TF-IDF values of adversarial perturbations overall when more
target features are used in calculation. So, these crafted emails have
a better chance to succeed as much as these successful adversarial
perturbations do.

However, the TF-IDF approximation method presents two chal-
lenges. First, the adversarial email being crafted ends up with a
large volume of words, for example, there are more than 50 words
that need to appear very frequently in the crafted spam email to
be able to bypass the spam filter in our experimental dataset. This
is not practical to implement in the real world. Second and more
importantly, it is hard to validate whether the resulting email is
still a spam email. Additional mechanisms, likely manually done,
are needed to verify that.



Table 1: Result of TF-IDF Approximation

𝑑𝑚𝑎𝑥
Success Rate of
PGD Attack

Number of
Target Features

Success Rate of
TF-IDF Approximation

0.09 91/100
500 75/91
1000 81/91
5000 91/91

0.07 76/100
500 54/76
1000 69/76
5000 76/76

0.05 38/100
500 13/38
1000 18/38
5000 38/38

White-box Attacks with Adding Special Words
Similar to a 5-fold cross-validation approach, we repeated the pro-
cess to retrain the SVM classifier, choose different 𝑑𝑚𝑎𝑥 for PGD,
and generate attack perturbations using different sets of spam
emails. We found that even with different 𝑑𝑚𝑎𝑥 settings and spam
emails, we got the same set of magic words for the same classi-
fier. But the SVM classifiers trained with different datasets resulted
in different words for this set. We suspect that the magic words
are dependent on the classifier, which means their performance is
sensitive to the dataset being used.

We added these words into all the spam emails in the dataset
and recalculated their TF-IDF values as input to the corresponding
SVM classifier. In a similar way, to further examine these words, we
identified the intersection and union sets of the five sets of magic
words and tested their performance on the SVM classifier trained
in the first repetition.

• Intersection Set (8 words): listbot, clickathom, ena, sitara, cera,
enrononlin, kaminski, calger

• Union Set (21 words): ferc, listbot, jhherbert, lokay, eyeforen-
ergi, erisk, counterparti, ena, sitara, topica, kal, calger, been-
laden, aggi, clickathom, cdnow, wassup, cera, enrononlin, pjm,
kaminski

As shown in Table 2, adding these magic words to original spam
emails is fairly successful in evading detection. The success rate
varies from over 75% to over 87% in the five repetitions. When we
use a smaller number of words in the intersection set, the success
rate is lowered to below 53%. But if we use the words in the union
set, the success rate is over 88%, the highest among all. More im-
portantly, this method of adding a few words does not change the
validity of a spam email in nature. It is relatively easy to hide these
words, especially if the original email is long, by embedding them
in the text or the fine print part of an email.
Black-box Attacks
In this experiment, we assume that we do not have access to any of
the classification models during the process of spam email crafting,
i.e., we do not use any information about the black-box models
(KNN, Decision Tree, Logistic Regression). We first extracted TF-
IDF values from the crafted spam emails, which were obtained from
the white-box attacks (more specifically as in Table 1 and the first
repetition in Table 2).We then fed the extracted TF-IDF values to the

black-box models and evaluated the attack success rate in terms of
bypassing those models. For simplification, we show the results in
Table 3 for setting 𝑑𝑚𝑎𝑥 at 0.09 for PGD, using 5000 target features
words in TF-IDF approximation, and using the union set of magic
words for adding special words. The success rate of adversarial
perturbations is based on the 91 adversarial perturbations that can
successfully attack the SVM classifier, same with the success rate
of TF-IDF approximation. The success rate of adding special words
is over the selected 100 spam emails.

Based on the results, the KNN classifier has the strongest re-
sistance to the attacks. This is especially true against adversarial
perturbations generated by PGD algorithm as well as the emails
through TF-IDF approximation. It can be explained that, compared
to the other classifiers, the KNN classifier stores all the original train-
ing examples and uses them in classification, where the decision
boundary has fine granularity. So, the adversarial examples relying
on gradient-based search in a different model may not well account
for the local intricacies of decision-making. However, adding spe-
cial words still caused 34 crafted emails to pass through detection,
outperforming TF-IDF approximation. This is an approach that in
general pulls an email, by adding those words, in the direction to
where ham emails reside in the feature space.

Decision tree and logistic regression classifiers are more suscep-
tible to the attacks. And overall, logistic regression has stronger
resistance than decision tree. This could be due to the fact that deci-
sion tree takes a step-wise approach in using the features. Compared
to logistic regression, the decision is impacted more significantly
by a subset of features. Therefore, adversarial attacks on a decision
tree model can be “less sophisticated” by focusing on these signif-
icant features to navigate in the feature space. However, for the
logistic regression model, more (or all) features, even if they may
have different weights, are involved at the same time in making
the classification decision. And they need to be handled together
in successful adversary attacks.

Attack transferability is demonstrated among these models in
the results. Moreover, the method of adding special words is more
effective in terms of the attack success rate against all the three
classifiers. However, as discussed before, this method may be sensi-
tive to the dataset used for training a classifier. Therefore, further
study on its effectiveness to use other datasets is needed.



Table 2: Result of Adding Special Words in Five Repetitions (Total Number of Spam Emails = 17,171)

"Magic Words"
Number of Successful
Adversarial Emails Success Rate

counterparti,clickathom,topica,listbot,sitara,cera,wassup,enrononlin
calger,eyeforenergi,kaminski,pjm,ena 13026 75.86%

beenladen,pjm,ena,ferc,topica,lokay,erisk,calger,cera,enrononlin,cdnow
listbot,aggi,kaminski,eyeforenergi,wassup,sitara,clickathom 13675 79.64%

beenladen,pjm,ena,ferc,topica,lokay,erisk,calger,cera,enrononlin,cdnow
listbot,aggi,kaminski,eyeforenergi,wassup,sitara,clickathom 14976 87.22%

sitara,clickathom,cdnow,listbot,ferc,enrononlin,calger,lokay,beenladen
wassup,kaminski,ena,cera,pjm,counterparti 13616 79.30%

sitara,clickathom,cdnow,listbot,enrononlin,lokay,calger,beenladen
wassup,kaminski,kal,ena,cera,eyeforenergi,counterparti 13918 81.06%

Intersection Set 9051 52.71%
Union Set 15227 88.68%

Table 3: Result of Black-box Attacks

Classification
Accuracy

Detection Rate of 100
Spam Emails Selected

Success Rate of
PGD Perturbation

Success Rate of
TF-IDF Approximation

Success Rate of
Adding Special Words

KNN 96.74% 100.00% 2.20% 2.20% 34.00%
Decision Tree 95.22% 94.00% 98.00% 98.90% 93.00%
Logistic Regression 99.02% 100.00% 89.01% 73.63% 80.00%

5 CONCLUSION AND FUTUREWORK
This paper studied two methods to craft the adversarial email con-
tent to evade spam detectors. With both based on the adversarial
perturbations generated by PGD algorithm, the first method ap-
proximates the TF-IDF values in the resulting adversarial examples,
and the second method identifies and uses a set of significant words.
We evaluated both methods on various machine learning classi-
fication models, including SVM, KNN, decision tree, and logistic
regression, in both white-box and black-box attack scenarios. It can
be concluded that the second method is more effective.

Further work is certainly required to further investigate the
spam filter vulnerabilities for which adversarial perturbation based
exploits exist. For example, TF-IDF approximation can be improved
in both the calculation precision to achieve and the validity of
the crafted emails. Additional experimentation with other spam
email databases and classifiers will gain more insights into these
two methods. Moreover, the current black-box attacks are based
on known data and feature extraction methods. Future research
should be conducted in more realistic settings to study spam filters
that are trained with different data and feature extraction methods.
Lastly, how to perform black-box attacks on real-world spam filters
is an interesting task in the next.
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