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Abstract—We leverage deep learning algorithms on various user
behavioral information gathered from end-user devices to
classify a subject of interest. In spite of the ability of these
techniques to counter spoofing threats, they are vulnerable to
adversarial learning attacks, where an attacker adds
adversarial noise to the input samples to fool the classifier into
false acceptance. Recently, a handful of mature techniques like
Fast Gradient Sign Method (FGSM) have been proposed to aid
white-box attacks, where an attacker has a complete knowledge
of the machine learning model. On the contrary, we exploit a
black-box attack to a behavioral biometric system based on gait
patterns, by using FGSM and training a shadow model that
mimics the target system. The attacker has limited knowledge
on the target model and no knowledge of the real user being
authenticated, but induces a false acceptance in authentication.
Our goal is to understand the feasibility of a black-box attack
and to what extent FGSM on shadow models would contribute
to its success. Our results manifest that the performance of
FGSM highly depends on the quality of the shadow model,
which is in turn impacted by key factors including the number
of queries allowed by the target system in order to train the
shadow model. Our experimentation results have revealed
strong relationships between the shadow model and FGSM
performance, as well as the effect of the number of FGSM
iterations used to create an attack instance. These insights also
shed light on deep-learning algorithms’ model shareability that
can be exploited to launch a successful attack.

Keywords—gait behavioral biometrics, deep-learning, FGSM,
adversarial machine learning, LSTM, shadow model, black-box
attack, authentication

1. INTRODUCTION

A. Motivation

State-of-the-art techniques for behavioral biometrics
include keystroke dynamics, mouse dynamics, gait,
touchscreens, call usage patterns, and location. Typically,
behavioral biometrics systems exploit a wealth of
measurements made by today’s devices (accelerometer,
gyroscope, GPS, etc.) and can use machine learning
algorithms on these measurements to build secure
authentication models that can continuously and
unobtrusively authenticate user. As user behaviors are hard to
spoof, these techniques resist against classic user spoofing
attacks (e.g., password hacks, biometric spoofing etc.).
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Recently, much attention has been paid to adversarial machine
learning and researchers have successfully fooled such
systems, e.g., Deepfake. For instance, machine learning (deep
neural networks) classifiers are vulnerable to adversarial
examples that are carefully designed to mislead classifiers
with a small perturbation added to original input samples. The
noise can be chosen by gradient based search with access to
the structure and parameters of a classifier, in so called white-
box attacks. However, the performance of black-box attacks
against deployed models, i.e., without knowledge of the
model parameters, often degrades significantly.

This research explores the possibility of applying Fast
Gradient Sign Method (FGSM), a common approach used for
white-box attacks on convolution neural networks, to launch
a black-box attack and construct attack samples to fool a
behavioral biometric system built on a Long Short-Term
Memory (LSTM) recurrent neural network. We exploit the
model shareability feature of deep learning algorithms and
train shadow models that mimic the targeted LSTM model for
this purpose.

B. Our Contributions

The novelty of our work stems from the following
perspectives:
No knowledge of user data used to train the target
model - In typical adversarial learning efforts, the
adversary has access to data from all classes. For
example, in a number recognition system attack, an
attacker has access to images of all numbers from one
through nine. However, in this study, an adversary has
no knowledge of data samples of the real user and any
other users used to build the classification model
being targeted by the attack. It only has access to one
class of input data, i.e., adversarial data samples of a
different user.
A black-box attack against Recurrent Neural
Networks (RNN) - Traditional adversarial attacks
focus on image classification systems, which usually
processes stationary data using Deep Neural
Networks (DNN), Convolutional Neural Networks
(CNN)), etc. Nevertheless, this study exploits the RNN
architecture trained on time-series data, reflecting
user walking behaviors. A strong correlation among
temporal features in its input brings multiple
challenges including query sampling, constructing



inputs to the target model, and building the shadow
model.

One key finding of our study is that the performance of
such a black-box attack relies on the quality of the shadow
model being trained. And the parameter configurations in our
approach, including the number of queries allowed to generate
the training instances for the shadow model and FGSM
settings, in turn affect the quality of the shadow models and
the performance of FGSM. With such insights, we will
provide a potential explanation to some interesting
phenomena during the FGSM iterations.

C. Threat Model

We consider a gait-based behavioral biometric system that
uses recurrent deep learning algorithms on tri-axial
accelerometer and gyroscope data gathered on a smartphone
to learn a gait-based user identification model. The
authentication model resides in a cloud or on the end device
and in realistic settings, a user with access to smartphone
applications can access a service if the user’s behavioral
characteristics are consistent with the model stored. We
assume that the user’s smartphone can be compromised by an
external attacker, e.g., by exploiting a vulnerability or
installing a malware, or by an internal attacker. During the
information gathering phase, the attacker sends multiple
authentication requests with manipulated input, without
getting locked out from the end system. Once enough
knowledge about the end system is gathered, the attacker
carefully constructs perturbed examples to evade the
behavioral biometrics authentication classifier, i.e., the target
model.

We assume that the attacker does not target the cloud or
the end device that is secured, and instead perturbates the
input of his own according to a strategy. Thus, the attacker can
record the tri-axial movement sequences of a non-real user
and make perturbations before sending it to the authentication
system. We extend the threat model in a paper by Papernot et
al. [1] by not allowing the attacker to query the target classifier
without limit, a more realistic assumption. It is important to
note that the recorded data is not a subset of the data used to
train the authentication model. Moreover, the confidence (a
probability) of the authentication decision is accessible to the
attacker, maybe through its application programming
interface (API).

IL.

Adversarial machine learning studies have seen massive
growth recently [2]. There are typically two types of attacks,
white-box attack and black-box attack [3]. In a white-box
attack, the attacker has access to the target model, including
its architecture, parameters, and even training data. While in a
black-box attack, the attacker is only able to interact with the
target model to certain extent, as well as with some knowledge
of its architecture at most. Fast Gradient Sign Method
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(FGSM), a common tool used to perturb an input for desired
misclassification effect was introduced by Ian Goodfellow et
al. [4]. The method works by finding how much each feature
in the input contributes to a change in classification result in a
trained model, and adding a perturbation accordingly.
However, FGSM requires complete knowledge of the
machine learning model.

Most of the adversarial machine learning attacks to date
have been focused on image classifiers. For example, on the
well-known MNIST database of handwritten digits,
adversarial attacks with small changes to the input image were
shown to fool some of the best image processing neural
networks with around 90% success rates [5]. For black-box
attacks, an attacker with no knowledge of either model
internals or training data could successfully launch attacks to
DNN models remotely hosted online [1]. The attack strategy
consists of training a local model, called a shadow model, to
substitute for the target model, using inputs synthetically
generated by an adversary and labeled by the target DNN [1].
Using a shadow model that mimics the target model helps
because an adversarial vulnerability is transferable among
models with the same structure [6].

Adversarial attacks have not been well studied within the
context of biometric authentication. One such example is the
FakeBob attack on a voice authentication system [7]. As part
of this effort, we select the gait-based behavioral biometric
system designed with LSTM by Shila et al. [8] to be used on
mobile devices for authentication applications as our target
system, and construct a black-box attack system by applying
FGSM on a shadow model.

II1.

Our experiments were implemented in TensorFlow
environment, where the target model is written with
TensorFlow sessions and the shadow model with the Keras
package in TensorFlow. We also utilized the FGSM library
offered within TensorFlow, which was implemented based on
the CleverHans library [9]. We used personal laptops without
GPUs for the experiments, but the codes were processed on
Google Collab environment utilizing resources from Google
Cloud. The computational cost is mainly with the training of
shadow models, which ranges from hours to days depending
on the number of training instances.

TECHNICAL APPROACH

A. Dataset and Features

The dataset contained three categories of data: real user
data of the authenticated user, non-real user data of 10 other
users, and adversarial data of another different user. The real
user data and the non-real user data are used to train the target
model. The dataset contains raw sensor streams, Google Play
APl to classify user activities, and other device and
application parameters. Eight features are selected to train the
model: tri-axial accelerometer with its magnitude, and tri-
axial gyroscope with its magnitude, while the Google API is

TABLE L. EXAMPLE OF ONE DATA SLICE IN ONE INPUT INSTANCE
AX AY AZ AM GX GY GZ GM
-14.41670 | -3.769670 | 2.688689 15.14200 | -0.2590100 | 0.4557050 | -0.1246200 | 0.5387780
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used to filter the dataset so that only data collected when the
user is walking is used. The sensors work under 50Hz
frequency, and the target model takes 200 continuous slices of
data, which is 4 seconds worth of data. We extract data with
the step set to 10, e.g. from 0 to 200, 10 to 210, 20 to 220 and
so. Therefore, each input has the form of 200x8 dimensions.
Table I shows a sample of one slice of data with 8 dimensions
in one input instance of 200 slices.

B. Terminologies

Before going into the details of our experiment design, we
define some terminologies that are going to be used when
describing our experiments. First, use of “negative” and
“positive” in classification can be ambiguous depending on
the application context. Therefore, “acceptance” and
“rejection” are used for the two classification classes of an
authentication system. If a real user input instance is denied
by the authentication system, it is a false rejection case. On
the contrary, if a non-real user input instance is authenticated
by the system, it is a false acceptance case. Our study is
interested in false acceptance cases.

Second, the output of the target and shadow models is in
the format of a confidence level between 0 and 1 of a class. In
our experiments, FGSM tries to lower the confidence on being
the non-real user class for an attack instance, which is the
probability that authentication is to be denied. So, we use the
term denial probability to refer to the output of models. The
goal of the attacker is to lower this denial probability as much
as possible.

Last, different types of data are used in several steps of
each experiment:

e Queries are inputs to the target model to create
training instances used for a shadow model, which are
randomly sampled from the adversary data.

Training Instances are the above queries together
with their corresponding outputs (denial probabilities)
generated from the target model. Training instances
are used to train the shadow models.

Adversarial Instances are inputs to the shadow model,
also randomly sampled from the adversary data. Our
goal is to perturb these instances to create attack
instances.

Attack Instances are created by FGSM working on the
shadow model by modifying the adversarial
instances. As inputs, attack instances are fed to the
target system in a hope to trigger false acceptance.

Note that we generated training and adversarial instances
by randomly sampling the adversarial data of an actual user.
This improves the efficiency compared to sampling the whole
input space that has large regions not representing any
possible human users.

C. The Target LSTM Model

The target model is implemented using TensorFlow. It has
two output classes: real user or non-real user, and 64 hidden
units. This model chooses the Rectified Linear Unit (ReLU)
as the activation function and stacks two LSTM layers with
64 hidden units. The output layer uses SoftMax function. This
model chooses L2 loss as its loss function. L2 loss is used to
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optimize the regular term in the objective function to prevent
parameters from being too complex and easy to overfit.
Although this is not a very sophisticated model, it is suitable
for this study that explores the feasibility of adversarial
attacks.

In training, the model takes an input vector with 8 features
for each perceptron, and recurrently takes in 200 slices to
generate a classification based on their accumulated outputs.
The step size between two consecutive classifications is 10
slices, which corresponds to 0.2 seconds of observation. We
train and test the model with the data of the real-user and 10
non-real users. We used 80% of the dataset for training the
model and the rest 20% of the dataset to test the model. We
use batch gradient descent with a batch size of 100 and Adam
optimizer with a learning rate of 0.0025 for optimization, and
run 20 epochs to train our model. The -continuous
authentication threshold is set at 0.5 for an input, which means
an alert will be triggered only if its denial probability is higher
than 0.5. The overall classification accuracy of the trained
model is higher than 99% on the testing data.

D. The Shadow Model

The attacker only has the knowledge that the target model
is an LSTM model and can receive the denial probability of
its query to train a shadow model. For this shadow model we
choose a vanilla tfkeras.layers. LSTM model with 200x8
input form and 1x2 output form, and everything else is set to
default. We also use SoftMax activation function to ensure
that the output probability is between 0 and 1.

E. FExperimentation Framework

As shown in Fig. 1, there are four control parameters in
this framework that could affect the experiment result.

Step 1. At the beginning, a set of queries are generated and
fed into the target model to get their corresponding denial
probabilities, referred to as Denial Probability 1 (DP1).

Here we introduce the first parameter, the number of
queries used. According to the threat model, a small number
of queries needed means the attack is easier to be
implemented, or the system is more vulnerable. On the
contrary, a large number of queries required implies the
system is more secure. For example, in practice, there is
usually a security threshold configured for such kind of
authentication systems, which is the maximum number of
failed authentication attempts that can be tolerated. If the
number of rejections exceeded this threshold, the system
would be locked.

Intuitively, fewer queries to the target model and resulting
training instance for the shadow model would result in less
knowledge being revealed about the target model and
transferred to the shadow model. More queries could better
explore the input /output relationships, so that the shadow
model would mimic the target model for a higher chance to
launch a successful attack. However, the sampling strategy is
also important. Counter-intuitively, simply increasing the
training data without representative samples of the feature
space actually runs the risk to result in a more biased shadow
model. Apart from the considerations of the security threshold
and the shadow model performance, a larger number of
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Figure 1.

queries also lead to a greater computational cost to run the
experiment, mainly in training the shadow model. In our
experimentation, we pick 10, 50, 100, and 1000 as the
candidate values of this parameter.

Step 2. We use the training instances, i.e., queries and their
corresponding denial probabilities calculated by the target
model, to train the shadow model.

Step 3. In this step, we apply FGSM using the shadow
model and a set of adversarial instances to create attack
instances. FGSM iteratively derives the gradient of each
feature and the desired perturbation to each adversarial
instance.

Here we introduce the second and third parameters in the
experimentation. The second parameter is the number of
adversarial instances we feed into the shadow model. The
purpose of using a number of adversarial instances is to
increase the chance of success by creating multiple attack
instances, since FGSM may not be equally effective on
different adversarial instances. FGSM is applied to each
adversarial instance one at a time. For simplicity, we fix this
parameter to 100 in our experiment.

The third parameter is the maximum number of iterations
that FGSM will be run for each adversarial instance. In each
iteration, FGSM perturbs the current input slightly in the hope
that the corresponding denial probability predicted by the
shadow model would be reduced. However, we need to decide
when to stop this loop so to output the resulting perturbed
instance as an attack instance to test the target model. This
parameter is decided in an empirical way. Going through a
series of tests of FGSM processing randomly selected
adversarial instances, we notice that in most cases, the denial
probability on their perturbations converges within 5-6
iterations. And if that is not the case, it seems very likely that
this denial probability does not converge at all. Based on this
observation, we relax the computation cost a little and set this
parameter to 10. So, for each adversarial instance given to the
shadow model watched by FGSM, the iteration stops either

Experimentation Process and Steps.

when the denial probability predicted by the shadow model
converges or if the number of iterations reaches 10. Then the
perturbed input in the last iteration becomes the output of
FGSM, i.e., an attack instance.

Step 4. We take the 100 initial adversarial instances and
feed them into the target model and record their denial
probabilities, referred to as Denial Probability 2 (DP2). It is
used to compare to that of the corresponding attack instance
(see below).

Step 5. Finally, we take the 100 attack instances generated
from FGSM and feed them to the target model to get their
corresponding denial probabilities. This probability is referred
to as Denial Probability 3 (DP3).

F. Performance Measures

We use two performance measures in the result of every
experiment:

e  Werecord the lowest score in DP3 on the target model

for the 100 attack instances, as the best performance
that the shadow model and FGSM achieve.
We calculate DP2-DP3 for each pair of adversarial
instance and attack instance, denoted by delta, and
take the average of these 100 delta values. This
measure represents on average how much the shadow
model and FGSM help in lowering the denial
probability over adversarial instances. If the approach
helps, we expect the average delta to be positive.
Otherwise, the approach is largely not helping.

There is one last parameter used: the above process is
repeated 10 times for each setting of the number of queries in
order to train the shadow model. The outcome of one single
experiment following this process may not be statistically
meaningful. Thus, we need to repeat the whole process several
times. So, to illustrate the performance, we calculate the
average of the 10 lowest denial probabilities as well as the
average of all the delta values of these 10 repetitions of
experiment.
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IV. EXPERIMENT RESULT AND ANALYSIS

A. Experiment Results

The experiment results for query sizes of 10, 50, 100 and
1000 are shown in TABLE II. We further plot how the average
lowest DP3 and the average delta change with the number of
queries in Fig. 2. And notice that we invert the Y-axis for the
average delta to show the relationship between these two
measures more intuitively. Among the four settings, query
size 1000 achieves the lowest average lowest DP3 and the
highest average delta. Actually, only its average delta is
positive, just slightly above zero, while the other three settings
yield negative values in average delta. This shows the
challenge that FGSM faces to create attack instances that can
perform better on the target model than original adversarial
instances.

TABLE II. EXPERIMENT RESULTS
Number of Queries | Average Lowest DP3 Average Delta
10 8.749E-01 -3.600E-03
50 8.400E-01 -7.266E-03
100 9.158E-01 -5.975E-03
1000 5.616E-01 1.434E-10

Based on Fig. 2, we suspect that more queries likely can
improve the quality of the shadow model to be trained. Such
a shadow model can possess relationships between input and
output that are more similar to the target model. And if the
shadow model has higher quality, more likely the FGSM
method generates attack instances that can lower the
probability being rejected for authentication on the target
model, with improvement over the original adversarial
instances. However, it is not abundantly obvious to draw a
clear conclusion.

So, we take a closer look at individual shadow models in
experiment repetitions. Fig. 3 and Fig. 4 use two Y-axis,
which are the lowest DP3 and the average delta. X-axis is each
shadow model trained in one experiment repetition. We only
show the plots for query sizes 10 and 1000 since others show
similar patterns.

Experiment Results
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1000.

As in Fig. 3, for most shadow models using only 10
training queries, when the average delta is higher, the lowest
denial probability is lower, a clear correlation between these
two measures. If authentication requires lower than 0.5 in the
denial probability for continuous authentication, one shadow
model (#10) succeeds in creating attack instances to fool this
system.

Fig. 4 shows the same pattern for shadow models using
1000 training instances. Overall, more models achieve better
performance with success than those in Fig. 3. For example,
the lowest DP3 among all the shadow models is around 0.04.

To conclude, applying FGSM on a shadow model, we
observe a strong relationship between the lowest denial
probability that attack instances can achieve and the average
delta. 1t is an indicator of how closely a shadow model
“represents” the target model. Moreover, the risk of this type
of black-box attack to succeed does exist, with a caveat that
more training queries/instances allowed can increase its
chance.



B. FGSM Performance during Iterations

We choose the experiments using 1000 training queries,
seeming the best among all, to look into the FGSM process.
We further choose arguably the best shadow model that has
the highest average delta value. One adversarial instance goes
through FGSM iterations, during which we keep adding
perturbation to this instance. Intuitively, we select the
adversarial instance which goes through 10 FGSM iterations
and generates the lowest denial probability on the shadow
model among all 100 adversarial instances.

As in Fig. 5, the denial probability of this instance on the
shadow model rapidly decreases through the 10 FGSM
perturbations. At the end, the denial probability output from
the shadow model is close to 0.05. On the target model, its
denial probability is around 0.95 at the beginning. However,
through FGSM iterations, this probability falls at first but then
goes up after five FGSM perturbations. The lowest denial
probability ever achieved is around 0.64. Although only one
adversarial instance is demonstrated here for ease of
illustration, we can see that the FGSM method does work
when the shadow model is similar to the target model.

We try to understand the counter-intuitive phenomenon
that the denial probability on the target model falls firstly and
then rises back. One possible reason is that too many iterations
of FGSM applied can “over-perturb” the instance due to the
fact that the shadow model is not the same as the target model.
At first, since the shadow model is somewhat similar to the
target model, FGSM processing an adversarial instance with
the help of the shadow model can generate a perturbed
instance that moves into a region belonging to the desired
class in the target model. So, when we add small perturbations
to the adversarial instances at the beginning, not only can we
decrease the denial probability on the shadow model, but also
the denial probability on the target model. After adding a few
more perturbations (in this case, the number is 5), the denial
probability on the shadow model is still decreasing, indicating
the instance stays in the real-user class region in the shadow
model. However, the denial probability on the target model
starts to increase, since the perturbed instance starts to leave
the region of real-user class in the target model. At the end of
the day, the shadow model only mimics the target model to
certain extent but not perfectly.

Fig. 6 shows the above scenario using a conceptual
illustration of simplified behavioral biometric data (not actual
input). The two models of a real-user are represented by two
circle areas where their intersection is the similarity of these
two models. Instances outside of the area of a model have high
denial probability predicted by that model. Within the model’s
circle, the closer the instance to the center of the circle, the
lower predicted denial probability this instance gets from this
model.

In this figure, FGSM starts with a black dot at the bottom
that is a randomly sampled adversary instance and fed to the
shadow model. In each iteration of FGSM, this instance gets
closer, in general, to the center of the shadow model. A new
instance after perturbation is shown as another black dot along
a path directed toward the center of the shadow model.
Initially, a perturbed instance also gets closer to the center of
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the target model once it enters the intersection area of the
shadow model and the target model. So, its denial probability
predicted by the target model also decreases. Eventually the
instance reaches one point that is closest to the center of the
target model, which generates the lowest possible denial
probability on this specific shadow model. But this is not yet
the lowest possible denial probability on the shadow model,
so the FGSM continues. However, now these new perturbed
instances turn away from the center of the target model further
and further, resulting in rising denial probabilities. Again, this
is because the shadow model is not a perfect replica of the
target model. If the instance is very close to the center of the
shadow model, it cannot be that close to the center of the target
model.

V.

Our study has shown that Al security applications based
on deep-learning algorithms (and classification models in
general) are vulnerable to black-box attacks. However, such
exploits highly depend on the quality of the trained shadow
model in order to enable effective attack input generation
through FGSM. As such, it is critical to install guards around
core machine learning models, so an adversary is limited in

CONCLUSION



knowledge that he is able of gathering. Insights from this work
provides guidance to future research in this subject.
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