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Abstract 
 
As Cross-Site Scripting (XSS) remains one of the top 

web security risks, people keep exploring ways to detect 
such attacks efficiently. So far, existing solutions only 
focus on the payload in a web request or a response, a 
single stage of a web transaction. This work proposes a 
new approach that integrates evidences from both a web 
request and its response in order to better characterize 
XSS attacks and separate them from normal web 
transactions. We first collect complete payloads of XSS 
and normal web transactions from two databases and 
extract features from them using the Word2vec 
technique. Next, we train two Gaussian mixture models 
(GMM) with these features, one for XSS transaction and 
one for normal web transactions. These two models can 
generate two probability scores for a new web 
transaction, which indicate how similar this web 
transaction is to XSS and normal traffics respectively. 
Finally, we put together these two GMM models in 
classification by combining these two probabilities to 
further improve detection accuracy. 
 
 
1. Introduction  
 

This research aims at a new approach of detecting 
Cross-Site Scripting (XSS) web attacks. Using 
information from multiple stages instead of one, the 
evolution of XSS can be better captured. Moreover, a 
dual model is employed that integrates an XSS model 
and a normal traffic model, presenting two opposite 
perspectives of one web transaction. In practice, this 
approach can be supported by a honeypot for evidence 
generation and collection. 
 
1.1. Cross Site Scripting (XSS) attack 
 

Cross Site Scripting (XSS) attackers take advantages 
of improper input validation to inject malicious code 
into web pages. XSS attacks can lead to defacing web 
pages and leaking sensitive data [1]. For its seriousness 

and prevalence, OWASP has listed the XSS 
vulnerability in its Top 10 Most Critical Web 
Application Security Risks from 2013 to 2017 [2].  

There are three types of XSS attacks, i.e., stored, 
reflected, and DOM-based. In the stored XSS attack, it 
embeds a piece of malicious code into a vulnerable web 
page, which is stored on the web server for later use. As 
a result, the attack will be executed when a victim visits 
the vulnerable web page. In this case an attacker does 
not need to craft special URLs since the malicious 
payload is already on the web server. In a reflected XSS 
attack, the attacker tricks the victim into clicking on an 
ill-formed URL, which sends malicious code to a 
vulnerable web application on a server. If not properly 
handled, the response from the server is then directed 
back to the victim’s browser that executes the XSS 
payload to enable the attacker to access the victim’s data. 
In the DOM-based XSS, the attacker also tricks the 
victim into clicking on a maliciously crafted URL. But 
the malicious code will not be sent to the vulnerable 
application. Instead, it will be executed at some point 
when a web page is loaded onto the victim’s machine. 
Our study focuses on reflective and stored XSS attacks. 
 
1.2. Word2vec technique 
 

Traditionally, a malicious script is inserted within a 
Hypertext Markup Language (HTML) code piece, 
which can be analyzed through natural language 
processing (NLP). It includes tag labels like <script>, 
<img> or <body> that can be considered as subjects, 
then follows with verb or noun, something like ‘alert()’ 
or ‘onload=’ in HTML. This mapping can be applied to 
all the elements in the HTML code.  

 There may be hidden relationships between tags or 
elements. Treating words in a piece of text as discrete 
atomic symbols in most of NLP systems seems not 
appropriate. More precisely, these words are arbitrarily 
encoded as integer values using a hash table. However, 
such encodings may fail to truly represent the words, as 
some important information, i.e., the linkage between 
tag and elements, is missing in coding. In contrast, 
representing such rich, high-dimensional relations as 
vectors, called word embeddings, can overcome the 



 

 

above problem. There is one of the most popular 
techniques used in NLP systems, called Word2vec. It is 
a predictive model used for learning the word 
embeddings from a text corpus, which is a list of words 
or tokens [3]. It comes with two model structures, the 
Continuous Bag-of-Words model (CBOW) and the 
Skip-Gram model. In our work, we utilize the CBOW 
model based on the following observations. 

1) CBOW model focuses on the existence of a word 
in a window of surrounding words, but the Skip-Gram 
also values the order of words. However, CBOW model 
is good enough in our problem since switching two 
words likely does not make a big impact. 

2) Compared to Skip-Gram model, CBOW model is 
more time-efficient. 

 After grouping similar words together in the vector 
space and assigning each word its corresponding vector 
value, Word2vec can “understand” the meaning of a 
piece of text, e.g., a web request or response, by 
establishing the association of any word pair. And the 
relationship of each word pair is measured by its cosine 
similarity in vector space. 
 
1.3. Gaussian mixture model (GMM) 
 

For statistical learning, [15] suggests that using 
GMM to fit the dataset and identify any outliers may be 
an alternative option if the Gaussian distribution is not 
applicable for the data. And as [16] states that GMM can 
well define all the possible data points by assigning the 
probability rather than a cluster in the k-means 
algorithm. Therefore, GMM can also be viewed as an 
extension to the k-means method, which is found to be 
the most popular statistical learning algorithm that finds 
probabilistic cluster assignments. 

Last but not least, a mixture model is a probabilistic 
model that is used to solve the subpopulation 
assignment. For example, given the height data of a 
group of people (population) that includes an unknown 
number of female or male in the group (subpopulation), 
the mixture model assumes that such data act as the sum 
of two shifted and scaled normal distributions. It can 
learn the subpopulations and predict which 
subpopulation an unknown identity, i.e., an observation, 
belongs to using a probability score. If the prediction is 
achieved without labeling the datasets, similar to 
clustering, a mixture model is refereed as unsupervised 
learning model. One such a model is a Gaussian mixture 
model (GMM), which can have more than two 
components or subpopulations.  

As illustrated in [4], XSS attacks, as one population, 
are multimodal with more than one variant of attack 
payloads in terms of words being using in them.  In one 
subpopulation, the word distribution of attacks may 
follow a normal distribution. If using only one 
distribution in modeling, the overall population may be 
poorly represented. It is important to model a 

multimodal distribution using a GMM model of 
multiple components.  

In this work, we develop an approach that uses 
GMMs to analyze XSS and normal web transactions by 
examining their payload as evidences. This study aims 
to improve detection performance by two enhancements: 
(1) correlating evidences from multiple request and 
response stages of an attack instance, common in any 
client/server transactions, and (2) integrating two 
GMMs modeling XSS and normal respectively.  
 
2. Related work  
 

Cross-Site Scripting (XSS) web attacks have been 
studied from different perspectives, including browser 
filter [11], intrusion detection system [12], [13] or 
firewall. Generally, they can be detected through 
signature-based, anomaly detection, or a combination of 
these two [14, 16]. Anomaly detection can handle zero-
day attacks while signature-based methods may not; 
however, anomaly detection may perform poorly with a 
non-comprehensive normal profile.  

 
2.1. Multi-stage attack detection 

 
Several studies have employed machine learning 

algorithms to detect computer attacks while considering 
different attack stages. Katipally et al [5] analyzed 
attacker’s behavior by utilizing a hidden Markov model 
(HMM). Their analysis considered a continuous 
sequence of different activities as one attack. In 
particular, they conceptualized five stages in such an 
attack model, where each stage represents a different 
operation. These stages include scanning through 
network mapping, enumeration through DNS requests, 
exploitation by access attempt through buffer overflow 
and SQL injection, exploitation by denial of service 
through flooding the system, and exploitation by 
malware through shell code. They generated input to 
train the HMM model based on previously learned alerts 
and intrusions that is effective in predicting the 
attacker’s behavior. However, a typical problem 
associated with most machine learning methods is a 
tendency of generating false alarms.  

Lee et al [6] also used HMM in intrusion detection 
using audit data. Their definition of a multi-stage attack 
consists of multiple attack activities, where each stage 
represents one type of attack. Installing an IDS agent 
based on Snort, they collected intrusion traces from each 
attack stage and fed the information to the HMM model. 
Their system showed efficiency in detection, but with a 
relatively high false positive rate.  

Sampath et al [7] took one step further in using the 
HMM and bag of words model by including the context 
in analysis. The contextual information they included 
varies from the source and destination IP addresses to 



 

 

the alert type and category. The intrusion alerts were 
first categorized according to K-means clustering. Then 
they fed collected sequences of alerts labeled with the 
cluster information to an HMM model that can predict 
the next probable alerts. The prediction can provide 
information about future attack strategies. Similarly, 
they considered one complete sequence of a multi-stage 
intrusion, which also consists of multiple attack 
activities. Their proposed system was sensitive to the 
number of clusters chosen in K-means clustering. It can 
produce an accuracy of 88% using 5 clusters while the 
accuracy drops to 31% using 50 clusters.  

Almutairi et al [8] proposed a method to detect 
multi-stage attacks based on examining the reputation of 
network IP addresses using fuzzy logic. They captured 
network traffic in three multi-stage attack scenarios. 
They evaluated the reputation of the IP address using 
fuzzy rules. The four fuzzy rules were formulated based 
on blocked IPs, anonymous proxy IPs, malicious 
geographical IPs, and low rated IPs. Their approach was 
efficient with a zero false positive rate for IP addresses 
classified as malicious. However, relying on 
whitelisting, it failed to detect new malicious IPs. 

 
2.2. XSS attack detection 

 
XSS attack detection based on machine learning has 

been well studied by researchers in these years. Fang et 
al presented a novel signature-based detection system 
using Word2vec and Long Short-Term Memory (LSTM) 
models [17]. After extracting the features by Word2vec, 
a LSTM model can be trained to segregate the XSS from 
normal data. And the precision rate is 99.5% in real 
dataset. 

Liu addressed web attack detection and employed 
several machine learning algorithms [9]. The author 
utilized Gaussian HMM and a lexical segmentation 
technique based on the bag of words technique. Both 
training and testing the HMM model used payloads in 
web requests, i.e., a URL link, to classify the traffic as 
normal or XSS. It claimed to achieve an accuracy of 
over 90% in detection. 

Wang et al [10] utilized an HMM model combined 
with the Bayes theorem. The authors stated that this 
method can learn the structure of attack vectors and 
minimize flaws of traditional sanitization procedures. 
The authors tried to evaluate the performance of such 
learning model using mutated XSS attacks in the XSSed 
database (http://xssed.com). Such XSS attacks may not 
include realistic attack variants. Moreover, design of 
this HMM model as well as how data collection was 
done lacked specific details. 

In contrast to many server-side XSS detection 
systems, Pelizzi et al [11] presented a new client-side 
XSS filter called XSSFilt. It was claimed to outperform 
NoScript, a Firefox plug-in, XSS Auditor on Google 
Chrome, and other server-side solutions in detecting 

reflected XSS attacks. The key functions of this filter 
include use of approximation rather than exact string 
match, utilization of their own improved syntactic 
confinement policy that are not SQL specific, and 
analysis on web responses. However, its approximate 
substring matching can lead to overfitting that increases 
the false positive rate. It may fail to identify unseen and 
varied XSS instances.  

In summary, most of studies that employ a machine 
learning approach in XSS detection, being either 
signature-based or anomaly-based, by use the evidence 
in only either the web request or the response. 
Consequently, these detection systems may fail to 
identify malicious script if such evidences alone are not 
discriminating enough. We propose an innovative 
approach utilizing dual GMM models to better 
characterize the difference between XSS and normal 
web transactions to fill this gap. 
 
3. Our approach  
 

We try to correlate evidences in both request and 
response payloads of an XSS attack. With richer 
information, it is believed that number of false positives 
and negatives can be potentially reduced. Practically, we 
utilize separate GMM models to characterize XSS and 
normal web transactions respectively and integrate 
predictions from these models in order to provide better 
classification of a new web transaction. 
 

Table 1. Comparison of our approach to 
others 

  Evidence  
  Single 

Stage 
Multiple 
Stages 

 

D
et

ec
tio

n 
M

od
el

 

XSS Others Our 
approach 

 
Dual 
model Normal Our 

approach 
Our 
approach 

 
Table 1 shows how our work (in shade) is compared 

to other existing efforts of XSS modeling and detection. 
The payloads of a complete request/response chain are 
assembled together to represent an entire web 
transaction. After collecting such information, an XSS 
model and a normal model are trained respectively. 
Before a web transaction is fed to the GMM model, 
payloads are divided into words and are vectorized by 
the Word2vec technique aforementioned. An GMM 
model is trained using either XSS or normal payloads to 
characterize distributions of these two types of 
transactions. The XSS model is trained by an XSS 
dataset and the normal model by a normal dataset.  

There are two models in detection, one is trained by 
XSS transactions and another by normal transactions. 



 

 

The former acts as a misuse detection system and the 
later acts as an anomaly detection system. The trained 
models calculate the probability scores of an unknown 
web transaction indicating how likely the instance is to 
XSS and normal subpopulations respectively. The 
output score from each model can be used to classify an 
unknown web transaction with a control threshold.  

 
4. Design and implementation  
 

The general framework and procedure of data 
collection and processing are shown in Figure 1. 

 

 
Figure 1. System design 

4.1. General design 
 

A reflective XSS attack is an application layer web 
attack that exploits vulnerabilities of a web server by 
specially formed web request scripts. A user is also 
known as the victim; an attacker uses the victim to 
exploit a web server vulnerability; and a web server has 
vulnerabilities that an XSS attack can exploit. An 
attacker is a computer node that generates a URL that 
contains a malicious payload and sends it to the victim 
to inject it into the web server. The victim is the client 
browser or user interacting with the web server, thereby, 

the one loading and executing a webpage with the 
malicious script injected. 

The process described above may vary based on the 
type of XSS attack. This research does offline analysis 
of the web traffic captured on the client browser side. 
Data collection collects web traffic packets at every 
stage of a web transaction. We use a web archive called 
XSSed (http://xssed.com) to generate and collect XSS 
transaction instances and an open source project called 
Web09 (http://boston.lti.cs.cmu.edu/Data/web08-
bst/planning.html) for normal transaction instances.  

The offline analysis uses XSS GMM and normal 
GMM models trained on the collected XSS and normal 
instances. We use a python package (http://scikit-
learn.org/stable/modules/mixture.html) to build GMM 
models and choose different numbers of components in 
investigation. 
 
4.2. Data collection 
 

Training and testing need labeled XSS and normal 
data. For the XSS dataset, 45,884 web transactions are 
collected. These samples are obtained from the XSSed 
database containing attacks occurring from February 7, 
2003 to March 15, 2013. The normal samples have 
34,561 web transactions from the Web09 database, 
which is a collection of web pages crawled in January 
and February 2009. These samples are randomly 
selected to be used for training and testing. 
 
4.2.1. Normal traffic collection. The original dataset is 
a 25-terabyte dataset of about 1 billion crawled 
webpages, which follows the order of the OPIC metric. 
The complete dataset is not available, so our research 
focuses on the 34,561 web transactions included in a 
sample dataset provided by the database. This dataset is 
distributed in the Web Archive (WARC) format, which 
is used to store “web crawls” as sequences of contents. 
More precisely, it contains warcinfo, response, resource, 
request, metadata, revisit, conversion, and continuation 
information. Parsing this sample dataset generates 
34,561 web transactions for the normal data. 
4.2.2. XSS traffic collection. The XSSed project has 
one of the largest online archives of vulnerable websites. 
As shown in Figure 2, XSSed lists every XSS 
vulnerability sample’s patching status, domain name, 
web application attack category, attack payload, and a 
link to the mirror destination of the website in question,  
 

 



 

 

Figure 2. Information for one vulnerable 
website in the XSSed archive 

 
Using Wireshark, a network sniffer, we capture both 

request and response after executing the mirror link and 
saved them to a PCAP file. 
 
4.3. Data processing  
 

As in Figure 3, each web transaction instance is 
processed into tokens then transformed into a 
corresponding vector through the Word2vec technique. 
It is obvious that raw requests and responses contain 
plenty of non-relevant information, including randomly 
generated digits and value, HTML tag name, and other 
special characters. Putting all such information into a 
GMM model may dilute the training result. Thus, we 
first filter out these contents in three steps: Selection, 
Decoding and Parsing. 

 
Figure 3. Processing one instance into an 

input vector for the GMM model 
 

4.3.1. Selection. The features are extracted from all the 
listed strategies and scenarios in the XSS Filter Evasion 
Cheat Sheet by OWASP [4]. Incorporating the RFC 
2616 Hypertext Transfer Protocol - HTTP/1.1, we 
summarize comprehensive HTML tag and attribute 
pairs that are frequently used in XSS attack payloads. In 
summary, those attack signatures come in three flavors, 
embedded as an external file, hidden in “harmless” 
parameter values, and hidden in data fields. Table 2 
shows some XSS payload examples. 

As we can see, some attribute values are as 
unexpected as defined by the web transaction protocol. 
For example, the browser is requesting a link: “<LINK 
REL="stylesheet" HREF="javascript:alert('XSS');">”. 
Instead hidden JavaScript codes may be triggered from 
their places. Hiding malicious operations in this way can 

confuse traditional XSS filters. Thus, we select these 
potential malicious parameter values and pass them to 
the decoder for further analysis. 

 
Table 2. Examples of malicious XSS payload 

Attribute Value Value 
Expected 

Description 

HREF javascri
pt:alert() 

URL Specifies the 
address of the 
external file to 
embed 

STYLE backgro
und-
image: 
url(javas
cript:ale
rt('XSS') 

CSS style Specifies an 
inline CSS 
style for an 
element 

SRC onmous
eover=”
alert('xx
s')” 

URL Specifies the 
address of the 
external file to 
embed 

 
4.3.2. Decoding. Encoding is a commonly used 
mechanism to obfuscate malicious code. As browsers 
automatically decode the HTML traffic and execute 
them, simple text filters may fail to recognize XSS 
payloads in a different encoding scheme. More precisely, 
the obfuscated strings can be overshadowed by multiple 
ways of encodings: Hexadecimal, Decimal, Octal, 
Unicode, Base64, and HTML reference characters. For 
example, generating a sequence of the special character 
“%” followed by two hexadecimal digits is used to 
represent the alphanumerical characters in the range of 
[a-z, A-Z, 0-9] and some special characters, which is 
called URL reference encoding. As in the second 
example in Table 3, ‘%77’ represent ASCII Value ‘w’ 
followed by ‘%2E’ as ‘.’ Although such encoding is 
sometime found in non-malicious JavaScript code, 
obfuscation using alternative encodings is widely used 
in XSS attacks. 
 

Table 3. Character references 

En
co

di
ng

 T
yp

e  

HTML-
Encoded 

<IMG 
SRC=&#106;&#97;&#118;&#97;&#1
15;&#99;&#114;&#105;&#112;&#116
;&#58;&#97;&#108;&#101;&#114;&
#116;&#40;&#39;&#88;&#83;&#83;
&#39;&#41;> 

Original <IMG SRC=javascript:alert('XSS')> 
URL-
Encoded 

<A 
HREF="http://%77%77%77%2E%67
%6F%6F%67%6C%65%2E%63%6F
%6D">XSS</A> 

Original <A 
HREF="http://www.google.com">XS
S</A> 

ASCII-
Encoded 

<IMG 
SRC=javascript:alert(String.fromChar
Code(88,83,83))> 



 

 

Original <IMG 
SRC=javascript:alert(String.fromChar
Code(XSS))> 

 
In addition to using different encoding schemes as in 

Table 3, obfuscation can also be done by inserting 
redundant characters to opening and closing of tags. 
Since the browser ignores the extra characters and 
automatically corrects the code, the presence of these 
characters may indicate the potential existence of XSS.  
 
4.3.3. Parsing. A parser tokenizes a string based on the 
following rules: 
1) Replace digits with blank space; 
2) Replace any value that only contains characters in 

ranges of [a-z] or [A-Z] with blank space; 
3) Replace special characters other than those in {'.', 

'_', '-', ':', '@', '/', '='} with blank space; 
4) Move the content in the parentheses as in {(), [], <>} 

to the back of them; 
5) Remove blank spaces and empty tokens; 
6) Substitute network location by ‘domain’ and 

directory by ‘path’ for the normal GMM model; 
7) Remove network locations for the XSS GMM 

model. 
As shown in Table 4, these rules remove non-critical 

value, such as in ‘Page=2’, ‘alert('XSS')’ and 
‘String.fromCharCode(‘XSS’)’ and keep special 
characters used in critical JavaScript methods or 
interpreter, such as ‘query=’, ‘alert()’,  
‘document.cookie’, and ‘onclick()’. Then they move out 
the parameter from the JavaScript function for further 
analysis as it may also contain special structure, e.g., 
‘javascript:alert(String.fromCharCode())’ is changed 
to ‘javascript:alert()’ and ‘String.fromCharCode()’. 
The resulting tokens are used to represent an instance of 
requests and responses for further processing. 
 

Table 4. Example of tokenizing a web request  
Request http://www.m86security.com/support/searh/S

iteSearch.asp?query=Search...&Product='"-
-></style></script><script>alert('XSS')</scri
pt>&Page=2?<IMG SRC=javascript:alert( 
String.fromCharCode(‘XSS’))> 

Token ['domain', 'path', 'query=', 'Search...', 
'Product=', 'alert()', 'Page=', 
'javascript:alert()','String.fromCharCode()'] 

 
Finally, we substitute the network location by 

‘domain’ and ‘path’ only for normal GMM model. The 
XSS GMM model focuses on tokens unique to XSS 
attacks. The network location tokens of ‘domain’ and 
‘path’ are common to all URL payloads, which are not 
useful to the XSS model. However, the normal GMM 
model establishes the normal profile. Thus, we only use 
‘domain’ and ‘path’ for the normal model. 
  

4.3.4. Vectorization. We use the Word2vec technique 
to convert each word to a corresponding vector value. 
The Word2vec model is trained on complete instances 
of requests and responses, containing all possible tokens. 
The input is formatted as a list of token sequences after 
the pre-processing steps. The number of dimensions is 
set to 200, a common choice for this parameter. For each 
token, Word2vec will output its corresponding unique 
vector, with one example shown in Figure 4. 

 

 
Figure 4. Partial vector for the token ‘alert()’ 

 
A vector represents the position of a token in the 

vector space based on its relationship with other tokens. 
In other words, two closely related tokens should 
possess neighboring positions for their closeness. Then, 
for each web transaction that contains multiple tokens, 
we calculate the average of these vectors to represent 
this instance, as the input to the GMM model. 
 
4.4. Training and testing 
  

In training, payloads of XSS or normal transactions 
are processed into vectors as input to a GMM model. 
The number of components varies from 1 to 10. 

In testing, the GMM model generates a probability 
score that represents the likelihood of a testing instance 
belonging to any subpopulation of the training dataset. 
This output score is in the form of log probability. Then 
we can set up a threshold for classification. For example, 
if the model is trained on XSS data then the higher this 
score is, the more likely the tested observation is XSS. 
The classification rule is that if the score is greater than 
a set threshold, this instance is classified as an XSS 
attack; otherwise it is classified as a normal instance. 

 
4.4.1. Two detection models. Our approach uses two 
GMM detection models. These two models include the 
one trained with only XSS dataset and the other trained 
with only normal dataset. Another difference of these 
two detection models is that the network location 
tokens of ‘domain’ and ‘path’ are only used for the 
normal GMM model.  
 
4.4.2. A dual model to integrate the two detection 
models. The two GMMs are tested on a same testing 



 

 

dataset that contains both XSS and normal instances. 
Ideally, these two models should give the same result, 
i.e., one is true and the other is false, since the ground 
truth of this instance is either normal or malicious. 
However, there may be instances that possess similarity 
to both normal and XSS instances in the training 
datasets. Intuitively, a consensus decision made after 
reconciling these two scores may improve the detection 
performance, lowering the false positive rate and the 
false negative rate at the same time. 

In a dual model, we combine these two scores for a 
testing instance from the two GMM models by 
calculating their difference 𝐶 = 	𝑙𝑜𝑔	𝑃1 	− 	𝑙𝑜𝑔	𝑃0	 , 
where P1 represents the probability score from the XSS 
model, and P0 represents the probability score from the 
normal model. We then vary a control threshold on this 
difference in order to classify the instance into either a 
normal or XSS class.  

 
5. Performance evaluation  
 
5.1. Experiment setting 
 

The dataset includes all available web transaction 
instances in the XSSed and Web09 databases. The sizes 
of the training and testing datasets used for XSS and 
normal GMM models are summarized in Table 5. These 
training and testing instances are randomly selected.  

We use Receiver Operating Characteristic (ROC) 
curve plots to evaluate detection models of different 
settings. A ROC curve is obtained by displaying pairs of 
True Positive Rate and False Positive Rate. The True 
Positive Rate is the ratio of the number of true positives 
to the total number of XSS instances; the False Positive 
Rate is the ratio of the number of false positives to the 
total number of normal instances. A common measure 
of the goodness of a ROC curve is the Area under the 
Curve (AUC), which is also used in our analysis. 

 
Table 5. Training and testing datasets 

Dataset XSS Normal Total 
Training  35884 24561 60445 
Testing 10000 10000 20000 

 
5.2. Single-stage models using web request 
 

For models using web request information only 
shown in Figure 5, the normal model seems to have 
perfect performance with regard to AUC value. On the 
other hand, the performance of XSS model is not 
satisfying. This can be explained by a significant 
difference between methods of XSS request processing. 

 

 
(a) Normal model 

 
(b) XSS model 

Figure 5. Single-stage detection models using 
only web requests 

 
From Table 6, we notice that a normal request is very 

“simple” compared to an XSS request. Instead of having 
a query in form of “srch="><script> 
alert(document.cookie)</script>&x=0&y=0” in an 
XSS request, the normal request only has a network 
location. Such contrast can be found extensively. 

 
Table 6. Normal and XSS request examples 
 Normal Request XSS Request 
Original http://1.assets.lingr

.com/room/l1ty5ap
5ItK/related 

http://www.iiar-
anticancer.org/search.
php?srch="><script>
alert(document.cooki
e)</script>&x=0&y=
0 

Input to 
Normal 
Model 

[‘domain’,’path’] [‘domain’,’path’,’src
h=’,’alert()’,’docume
nt.cookie’,’x=’,’y=’] 

Input to 
XSS 
Model 

[] [’srch=’,’alert()’,’doc
ument.cookie’,’x=’,’
y=’] 

 
Most of the normal request vectors consist of only 

‘domain’ and ‘path’ tokens. Dominating the testing 
input, the normal detection model can easily recognize 



 

 

XSS requests. However, this is not the case for XSS 
instances. Such normal requests do not capture useful 
tokens like ‘alert()’ or ‘document.cookie’ in more 
complex requests, which results in an empty list when it 
is fed to the XSS model. In fact, the testing dataset only 
has 22 non-empty input when feeding XSS model, 
which is shown in Table 7. Hence, testing results of 
single-stage detection models using web requests only 
are not meaningful in general. 

 
Table 7. Web requests for testing 

 Valid XSS 
Instance/Total 

Valid Normal 
Instance/Total 

Normal Model 10000/10000 10000/10000 
XSS Model 9853/10000 22/10000 
 

5.2. Single-stage models using web response 
 
In contrast, a web response has much richer 

information than a web request as shown in Table 8. 
Such a response may contain multiple tokens that are 
useful for both normal and XSS models. 

 
Table 8. Normal and XSS response examples 

 Normal Response XSS Response 
Original <!DOCTYPE HTML 

PUBLIC "-//W3C// 
DTD HTML 4.01 
Transitional//EN" 
"http://www.w3c.org/
TR/1999/REC-
html401-
19991224/loose.dtd">
<HTML><HEAD>… 

<!DOCTYPE 
html PUBLIC '-
//W3C//DTD 
XHTML 1.0 
Transitional//EN' 
'http://www.w3.or
g/TR/xhtml1/DTD
/xhtml1-
transitional. 
dtd'><html 
xmlns='http://ww
w.w3.org/1999/xh
tml' >… 

Input to 
Normal 
Model 

['javascript:copyit()', 
'document.getElement
ById()', '.value'] 

['homePage= ', 
'alert()', 
'document.cookie'
] 
 

Input to 
XSS 
Model 

['javascript:copyit()', 
'document.getElement
ById()', '.value'] 

[’srch=’,’alert()’,’
document.cookie’,
’x=’,’y=’] 

   
Table 9. Web responses for testing 

 Valid XSS 
Instance/Total 

Valid Normal 
Instance/Total 

Normal Model  9398/10000 7544/10000 
XSS Model 9398/10000 7544/10000 

 
As in Table 9, web responses generate sufficient 

testing instances for both the normal and XSS models.  

 

 
(a) Normal model 

 
(b) XSS model 

Figure 6. Single-stage detection models 
using only web response 

 
The ROC curves and AUC scores for these models 

in Figure 6. Overall, it seems that normal detection 
models are better than XSS models in detection. And the 
number of components in a GMM model has an impact 
on the detection performance. However, increasing the 
components does not always improve the performance. 
As shown in Figure 6, the AUC score for 3 components 
is lower than that for 2 components.  

 
5.3. Multi-stage and dual detection models  
 

Multi-stage detection models correlate web response 
and response tokens as in their input. Figure 7 shows the 
performance of detection models using both web request 
and response with different numbers of components. In 
comparison to the single-stage models in Figure 6, there 
is an improvement in their performance with respect to 
the AUC scores. 

 



 

 

 
(a) Normal model 

 
(b) XSS model 

Figure 7. Multi-stage detection models 
using both requests and responses 

 
We test dual models by integrating the two scores 

from the XSS and normal GMM models. We can do this 
for single-stage models and multi-stage models 
respectively. We select the number of components 
having the best performance in this process. Figure 8(a) 
shows that the single-stage dual GMM model 
outperforms the comparable individual single-stage 
models in Figure 6. Figure 8(b) shows that the multi-
stage dual model is better than those individual multi-
stage models in Figure 7. 

 

 
(a) Single-stage dual model using only web responses 

(GMM with 9 components) 

 
(b) Multi-stage dual model using both requests and 

responses (GMM with 10 components) 

Figure 8. Dual detection models integrating 
normal and XSS models 

 
There are enough XSS and normal instances in these 

testing results. We are comfortable to draw the 
conclusion that multi-stage and dual detection models 
can improve the accuracy of XSS attack detection. 

 
5.4. Limitation of the results  
 

However, as also showed in several other studies 
[10], [11], [17] and [18] that use malicious scripts from 
the XSSed project and very different benign scripts from 
Dmoz or ClueWeb09, some of the results are too good 
to be convincing. Therefore, testing out approach on 
more realistic traffics may yield more useful findings. A 
couple projects collected large datasets that can be very 
useful on this front as in [19] and [20]. We can continue 
to investigate this approach by studying better data 
collection and feature extraction techniques. 
 
6. Conclusion  

 
Most of the existing solutions of detecting XSS 

attacks examine the evidence in only one stage. We have 



 

 

studied an approach that looks at the information in both 
request and response stages and employs a dual model 
of combining anomaly detection with misuse detection. 
This approach utilizes the Word2vec technique and 
Gaussian mixture models. Evaluation using real data 
coming from two databases of XSS and normal web 
transactions has shown its effectiveness.  
 
7. Acknowledgement 
 

This work has received partial support from NSF 
through Award No. 1525485. We like to thank Qiqing 
Huang, Bayan Al Muhander and Likitha Satish from 
Johns Hopkins University Information Security Institute 
for their effort in a previous relevant project. 

1525485. 
8. References  
      
[1] K. Spett, “Cross-site scripting”, SPI Labs, 2005, pp. 1-20.  
[2] “Top10-2017 Top 10”, 2017. [Online]. Available: 
https://www.owasp.org/index.php/Top_10-2017_Top_10. 
[Accessed: 30- Dec- 2017] 
[3] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. 
Dean, “Distributed Representations of Words and Phrases and 
their Compositionality”, NIPS, Lake Tahoe, NV, 2013, pp. 
3111-3119. 
[4] “XSS Filter Evasion Cheat Sheet”. [Online]. Available: 
https://www.owasp.org/index.php/XSS_Filter_Evasion_Chea
t_Sheet. [Accessed: 30- Mar- 2018] 
[5] R. Katipally, L. Yang, and A. Liu, “Attacker behavior 
analysis in multi-stage attack detection system”, Proceedings 
of the Seventh Annual Workshop on Cyber Security and 
Information Intelligence Research (CSIIRW’11), New York, 
NY, USA, 2011, No. 63. 
[6] D.H. Lee, D.Y. Kim, and J.I. Jung, “Multi-Stage Intrusion 
Detection System Using Hidden Markov Model Algorithm”, 
ICISS, Seoul, 2008, pp. 72-77. 
[7] U.S.K.P.M. Thanthrige, J. Samarabandu, and X. Wang. 
“Intrusion Alert Prediction Using a Hidden Markov Model”, 
arXiv:1610.07276, 2016. 
[8] A. Almutairi, D. Parish and J. Flint, “Predicting multi-stage 
attacks based on IP information”, ICITST, London, 2015, pp. 
384-390. 

[9] L. Yan, “Machine learning for the web security”, 
Mechanical Industry Press, 2017.  
[10] Y.H. Wang, C.H. Mao, and H.M. Lee, “Structural 
Learning of Attack Vectors for Generating Mutated XSS 
Attacks”, TAV-WEB, 2010. 
[11] R. Pelizzi, and R. Sekar, “Protection, Usability and 
Improvements in Reflected XSS Filters”, ASIACCS 2012, 
New York, NY, 2012. 
[12] T. Pietraszek, C.V. Berghe, “Defending against injection 
attacks through context-sensitive string evaluation”, Recent 
Advances in Intrusion Detection, Berlin, Heidelberg, 2005, pp. 
124–145.  
[13] S. Goswami, N. Hoque, D.K. Bhattacharyya, and J.K. 
Kalita, “An Unsupervised Method for Detection of XSS 
Attack”, I. J. Network Security, 2017, pp. 761-775. 
[14] A. L. Buczak and E. Guven, “A survey of data mining 
and machine learning methods for cyber security intrusion 
detection”, IEEE Communications Surveys & Tutorials, 2016, 
pp. 1153–1176. 
[15] N. Moustafa, G. Creech, and J. Slay, “Big data analytics 
for intrusion detection system: Statistical decision-making 
using finite dirichlet mixture models”, Data Analytics and 
Decision Support for Cybersecurity, 2017, pp. 127–156. 
[16] N. Moustafa, G. Misra and J. Slay, “Generalized Outlier 
Gaussian Mixture technique based on Automated Association 
Features for Simulating and Detecting Web Application 
Attacks”, IEEE Transactions on Sustainable Computing, 
2018. 
[17] Y. Fang, Y. Li, L. Liu, and C. Huang, “DeepXSS: Cross 
Site Scripting Detection Based on Deep Learning”, 
Proceedings of the 2018 International Conference on 
Computing and Artificial Intelligence (ICCAI 2018), New 
York, NY, 2018, pp. 47-51. 
[18] F.A. Mereani, and J. M. Howe, “Detecting Cross-Site 
Scripting Attacks Using Machine Learning”, Advances in 
Intelligent Systems and Computing, Cham, 2018, pp. 200-210. 
[19] N. Moustafa, and J. Slay, “UNSW-NB15: a 
comprehensive data set for network intrusion detection 
systems (UNSW-NB15 network data set)”, Military 
Communications and Information Systems Conference 
(MilCIS), 2015. 
[20] N. Moustafa, and J. Slay, “The evaluation of Network 
Anomaly Detection Systems: Statistical analysis of the 
UNSW-NB15 data set and the comparison with the KDD99 
data set”, Information Security Journal: A Global 
Perspective, 2016, pp. 1-14.

 


