

Cross-Site Scripting (XSS) Detection Integrating Evidences in Multiple Stages

Jingchi Zhang
Information Security Institute

Johns Hopkins University
jzhan161@jhu.edu

Yu-Tsern Jou
Information Security Institute

Johns Hopkins University
yjou2@jhu.edu

Xiangyang Li
Johns Hopkins University

Information Security Institute
xyli@jhu.edu

Abstract

As Cross-Site Scripting (XSS) remains one of the top

web security risks, people keep exploring ways to detect
such attacks efficiently. So far, existing solutions only
focus on the payload in a web request or a response, a
single stage of a web transaction. This work proposes a
new approach that integrates evidences from both a web
request and its response in order to better characterize
XSS attacks and separate them from normal web
transactions. We first collect complete payloads of XSS
and normal web transactions from two databases and
extract features from them using the Word2vec
technique. Next, we train two Gaussian mixture models
(GMM) with these features, one for XSS transaction and
one for normal web transactions. These two models can
generate two probability scores for a new web
transaction, which indicate how similar this web
transaction is to XSS and normal traffics respectively.
Finally, we put together these two GMM models in
classification by combining these two probabilities to
further improve detection accuracy.

1. Introduction

This research aims at a new approach of detecting
Cross-Site Scripting (XSS) web attacks. Using
information from multiple stages instead of one, the
evolution of XSS can be better captured. Moreover, a
dual model is employed that integrates an XSS model
and a normal traffic model, presenting two opposite
perspectives of one web transaction. In practice, this
approach can be supported by a honeypot for evidence
generation and collection.

1.1. Cross Site Scripting (XSS) attack

Cross Site Scripting (XSS) attackers take advantages
of improper input validation to inject malicious code
into web pages. XSS attacks can lead to defacing web
pages and leaking sensitive data [1]. For its seriousness

and prevalence, OWASP has listed the XSS
vulnerability in its Top 10 Most Critical Web
Application Security Risks from 2013 to 2017 [2].

There are three types of XSS attacks, i.e., stored,
reflected, and DOM-based. In the stored XSS attack, it
embeds a piece of malicious code into a vulnerable web
page, which is stored on the web server for later use. As
a result, the attack will be executed when a victim visits
the vulnerable web page. In this case an attacker does
not need to craft special URLs since the malicious
payload is already on the web server. In a reflected XSS
attack, the attacker tricks the victim into clicking on an
ill-formed URL, which sends malicious code to a
vulnerable web application on a server. If not properly
handled, the response from the server is then directed
back to the victim’s browser that executes the XSS
payload to enable the attacker to access the victim’s data.
In the DOM-based XSS, the attacker also tricks the
victim into clicking on a maliciously crafted URL. But
the malicious code will not be sent to the vulnerable
application. Instead, it will be executed at some point
when a web page is loaded onto the victim’s machine.
Our study focuses on reflective and stored XSS attacks.

1.2. Word2vec technique

Traditionally, a malicious script is inserted within a
Hypertext Markup Language (HTML) code piece,
which can be analyzed through natural language
processing (NLP). It includes tag labels like <script>,
 or <body> that can be considered as subjects,
then follows with verb or noun, something like ‘alert()’
or ‘onload=’ in HTML. This mapping can be applied to
all the elements in the HTML code.

 There may be hidden relationships between tags or
elements. Treating words in a piece of text as discrete
atomic symbols in most of NLP systems seems not
appropriate. More precisely, these words are arbitrarily
encoded as integer values using a hash table. However,
such encodings may fail to truly represent the words, as
some important information, i.e., the linkage between
tag and elements, is missing in coding. In contrast,
representing such rich, high-dimensional relations as
vectors, called word embeddings, can overcome the

above problem. There is one of the most popular
techniques used in NLP systems, called Word2vec. It is
a predictive model used for learning the word
embeddings from a text corpus, which is a list of words
or tokens [3]. It comes with two model structures, the
Continuous Bag-of-Words model (CBOW) and the
Skip-Gram model. In our work, we utilize the CBOW
model based on the following observations.

1) CBOW model focuses on the existence of a word
in a window of surrounding words, but the Skip-Gram
also values the order of words. However, CBOW model
is good enough in our problem since switching two
words likely does not make a big impact.

2) Compared to Skip-Gram model, CBOW model is
more time-efficient.

 After grouping similar words together in the vector
space and assigning each word its corresponding vector
value, Word2vec can “understand” the meaning of a
piece of text, e.g., a web request or response, by
establishing the association of any word pair. And the
relationship of each word pair is measured by its cosine
similarity in vector space.

1.3. Gaussian mixture model (GMM)

For statistical learning, [15] suggests that using
GMM to fit the dataset and identify any outliers may be
an alternative option if the Gaussian distribution is not
applicable for the data. And as [16] states that GMM can
well define all the possible data points by assigning the
probability rather than a cluster in the k-means
algorithm. Therefore, GMM can also be viewed as an
extension to the k-means method, which is found to be
the most popular statistical learning algorithm that finds
probabilistic cluster assignments.

Last but not least, a mixture model is a probabilistic
model that is used to solve the subpopulation
assignment. For example, given the height data of a
group of people (population) that includes an unknown
number of female or male in the group (subpopulation),
the mixture model assumes that such data act as the sum
of two shifted and scaled normal distributions. It can
learn the subpopulations and predict which
subpopulation an unknown identity, i.e., an observation,
belongs to using a probability score. If the prediction is
achieved without labeling the datasets, similar to
clustering, a mixture model is refereed as unsupervised
learning model. One such a model is a Gaussian mixture
model (GMM), which can have more than two
components or subpopulations.

As illustrated in [4], XSS attacks, as one population,
are multimodal with more than one variant of attack
payloads in terms of words being using in them. In one
subpopulation, the word distribution of attacks may
follow a normal distribution. If using only one
distribution in modeling, the overall population may be
poorly represented. It is important to model a

multimodal distribution using a GMM model of
multiple components.

In this work, we develop an approach that uses
GMMs to analyze XSS and normal web transactions by
examining their payload as evidences. This study aims
to improve detection performance by two enhancements:
(1) correlating evidences from multiple request and
response stages of an attack instance, common in any
client/server transactions, and (2) integrating two
GMMs modeling XSS and normal respectively.

2. Related work

Cross-Site Scripting (XSS) web attacks have been
studied from different perspectives, including browser
filter [11], intrusion detection system [12], [13] or
firewall. Generally, they can be detected through
signature-based, anomaly detection, or a combination of
these two [14, 16]. Anomaly detection can handle zero-
day attacks while signature-based methods may not;
however, anomaly detection may perform poorly with a
non-comprehensive normal profile.

2.1. Multi-stage attack detection

Several studies have employed machine learning

algorithms to detect computer attacks while considering
different attack stages. Katipally et al [5] analyzed
attacker’s behavior by utilizing a hidden Markov model
(HMM). Their analysis considered a continuous
sequence of different activities as one attack. In
particular, they conceptualized five stages in such an
attack model, where each stage represents a different
operation. These stages include scanning through
network mapping, enumeration through DNS requests,
exploitation by access attempt through buffer overflow
and SQL injection, exploitation by denial of service
through flooding the system, and exploitation by
malware through shell code. They generated input to
train the HMM model based on previously learned alerts
and intrusions that is effective in predicting the
attacker’s behavior. However, a typical problem
associated with most machine learning methods is a
tendency of generating false alarms.

Lee et al [6] also used HMM in intrusion detection
using audit data. Their definition of a multi-stage attack
consists of multiple attack activities, where each stage
represents one type of attack. Installing an IDS agent
based on Snort, they collected intrusion traces from each
attack stage and fed the information to the HMM model.
Their system showed efficiency in detection, but with a
relatively high false positive rate.

Sampath et al [7] took one step further in using the
HMM and bag of words model by including the context
in analysis. The contextual information they included
varies from the source and destination IP addresses to

the alert type and category. The intrusion alerts were
first categorized according to K-means clustering. Then
they fed collected sequences of alerts labeled with the
cluster information to an HMM model that can predict
the next probable alerts. The prediction can provide
information about future attack strategies. Similarly,
they considered one complete sequence of a multi-stage
intrusion, which also consists of multiple attack
activities. Their proposed system was sensitive to the
number of clusters chosen in K-means clustering. It can
produce an accuracy of 88% using 5 clusters while the
accuracy drops to 31% using 50 clusters.

Almutairi et al [8] proposed a method to detect
multi-stage attacks based on examining the reputation of
network IP addresses using fuzzy logic. They captured
network traffic in three multi-stage attack scenarios.
They evaluated the reputation of the IP address using
fuzzy rules. The four fuzzy rules were formulated based
on blocked IPs, anonymous proxy IPs, malicious
geographical IPs, and low rated IPs. Their approach was
efficient with a zero false positive rate for IP addresses
classified as malicious. However, relying on
whitelisting, it failed to detect new malicious IPs.

2.2. XSS attack detection

XSS attack detection based on machine learning has

been well studied by researchers in these years. Fang et
al presented a novel signature-based detection system
using Word2vec and Long Short-Term Memory (LSTM)
models [17]. After extracting the features by Word2vec,
a LSTM model can be trained to segregate the XSS from
normal data. And the precision rate is 99.5% in real
dataset.

Liu addressed web attack detection and employed
several machine learning algorithms [9]. The author
utilized Gaussian HMM and a lexical segmentation
technique based on the bag of words technique. Both
training and testing the HMM model used payloads in
web requests, i.e., a URL link, to classify the traffic as
normal or XSS. It claimed to achieve an accuracy of
over 90% in detection.

Wang et al [10] utilized an HMM model combined
with the Bayes theorem. The authors stated that this
method can learn the structure of attack vectors and
minimize flaws of traditional sanitization procedures.
The authors tried to evaluate the performance of such
learning model using mutated XSS attacks in the XSSed
database (http://xssed.com). Such XSS attacks may not
include realistic attack variants. Moreover, design of
this HMM model as well as how data collection was
done lacked specific details.

In contrast to many server-side XSS detection
systems, Pelizzi et al [11] presented a new client-side
XSS filter called XSSFilt. It was claimed to outperform
NoScript, a Firefox plug-in, XSS Auditor on Google
Chrome, and other server-side solutions in detecting

reflected XSS attacks. The key functions of this filter
include use of approximation rather than exact string
match, utilization of their own improved syntactic
confinement policy that are not SQL specific, and
analysis on web responses. However, its approximate
substring matching can lead to overfitting that increases
the false positive rate. It may fail to identify unseen and
varied XSS instances.

In summary, most of studies that employ a machine
learning approach in XSS detection, being either
signature-based or anomaly-based, by use the evidence
in only either the web request or the response.
Consequently, these detection systems may fail to
identify malicious script if such evidences alone are not
discriminating enough. We propose an innovative
approach utilizing dual GMM models to better
characterize the difference between XSS and normal
web transactions to fill this gap.

3. Our approach

We try to correlate evidences in both request and
response payloads of an XSS attack. With richer
information, it is believed that number of false positives
and negatives can be potentially reduced. Practically, we
utilize separate GMM models to characterize XSS and
normal web transactions respectively and integrate
predictions from these models in order to provide better
classification of a new web transaction.

Table 1. Comparison of our approach to
others

 Evidence
 Single

Stage
Multiple
Stages

D
et

ec
tio

n
M

od
el

XSS Others Our
approach

Dual
model Normal Our

approach
Our
approach

Table 1 shows how our work (in shade) is compared

to other existing efforts of XSS modeling and detection.
The payloads of a complete request/response chain are
assembled together to represent an entire web
transaction. After collecting such information, an XSS
model and a normal model are trained respectively.
Before a web transaction is fed to the GMM model,
payloads are divided into words and are vectorized by
the Word2vec technique aforementioned. An GMM
model is trained using either XSS or normal payloads to
characterize distributions of these two types of
transactions. The XSS model is trained by an XSS
dataset and the normal model by a normal dataset.

There are two models in detection, one is trained by
XSS transactions and another by normal transactions.

The former acts as a misuse detection system and the
later acts as an anomaly detection system. The trained
models calculate the probability scores of an unknown
web transaction indicating how likely the instance is to
XSS and normal subpopulations respectively. The
output score from each model can be used to classify an
unknown web transaction with a control threshold.

4. Design and implementation

The general framework and procedure of data
collection and processing are shown in Figure 1.

Figure 1. System design

4.1. General design

A reflective XSS attack is an application layer web
attack that exploits vulnerabilities of a web server by
specially formed web request scripts. A user is also
known as the victim; an attacker uses the victim to
exploit a web server vulnerability; and a web server has
vulnerabilities that an XSS attack can exploit. An
attacker is a computer node that generates a URL that
contains a malicious payload and sends it to the victim
to inject it into the web server. The victim is the client
browser or user interacting with the web server, thereby,

the one loading and executing a webpage with the
malicious script injected.

The process described above may vary based on the
type of XSS attack. This research does offline analysis
of the web traffic captured on the client browser side.
Data collection collects web traffic packets at every
stage of a web transaction. We use a web archive called
XSSed (http://xssed.com) to generate and collect XSS
transaction instances and an open source project called
Web09 (http://boston.lti.cs.cmu.edu/Data/web08-
bst/planning.html) for normal transaction instances.

The offline analysis uses XSS GMM and normal
GMM models trained on the collected XSS and normal
instances. We use a python package (http://scikit-
learn.org/stable/modules/mixture.html) to build GMM
models and choose different numbers of components in
investigation.

4.2. Data collection

Training and testing need labeled XSS and normal
data. For the XSS dataset, 45,884 web transactions are
collected. These samples are obtained from the XSSed
database containing attacks occurring from February 7,
2003 to March 15, 2013. The normal samples have
34,561 web transactions from the Web09 database,
which is a collection of web pages crawled in January
and February 2009. These samples are randomly
selected to be used for training and testing.

4.2.1. Normal traffic collection. The original dataset is
a 25-terabyte dataset of about 1 billion crawled
webpages, which follows the order of the OPIC metric.
The complete dataset is not available, so our research
focuses on the 34,561 web transactions included in a
sample dataset provided by the database. This dataset is
distributed in the Web Archive (WARC) format, which
is used to store “web crawls” as sequences of contents.
More precisely, it contains warcinfo, response, resource,
request, metadata, revisit, conversion, and continuation
information. Parsing this sample dataset generates
34,561 web transactions for the normal data.
4.2.2. XSS traffic collection. The XSSed project has
one of the largest online archives of vulnerable websites.
As shown in Figure 2, XSSed lists every XSS
vulnerability sample’s patching status, domain name,
web application attack category, attack payload, and a
link to the mirror destination of the website in question,

Figure 2. Information for one vulnerable
website in the XSSed archive

Using Wireshark, a network sniffer, we capture both

request and response after executing the mirror link and
saved them to a PCAP file.

4.3. Data processing

As in Figure 3, each web transaction instance is
processed into tokens then transformed into a
corresponding vector through the Word2vec technique.
It is obvious that raw requests and responses contain
plenty of non-relevant information, including randomly
generated digits and value, HTML tag name, and other
special characters. Putting all such information into a
GMM model may dilute the training result. Thus, we
first filter out these contents in three steps: Selection,
Decoding and Parsing.

Figure 3. Processing one instance into an

input vector for the GMM model

4.3.1. Selection. The features are extracted from all the
listed strategies and scenarios in the XSS Filter Evasion
Cheat Sheet by OWASP [4]. Incorporating the RFC
2616 Hypertext Transfer Protocol - HTTP/1.1, we
summarize comprehensive HTML tag and attribute
pairs that are frequently used in XSS attack payloads. In
summary, those attack signatures come in three flavors,
embedded as an external file, hidden in “harmless”
parameter values, and hidden in data fields. Table 2
shows some XSS payload examples.

As we can see, some attribute values are as
unexpected as defined by the web transaction protocol.
For example, the browser is requesting a link: “<LINK
REL="stylesheet" HREF="javascript:alert('XSS');">”.
Instead hidden JavaScript codes may be triggered from
their places. Hiding malicious operations in this way can

confuse traditional XSS filters. Thus, we select these
potential malicious parameter values and pass them to
the decoder for further analysis.

Table 2. Examples of malicious XSS payload

Attribute Value Value
Expected

Description

HREF javascri
pt:alert()

URL Specifies the
address of the
external file to
embed

STYLE backgro
und-
image:
url(javas
cript:ale
rt('XSS')

CSS style Specifies an
inline CSS
style for an
element

SRC onmous
eover=”
alert('xx
s')”

URL Specifies the
address of the
external file to
embed

4.3.2. Decoding. Encoding is a commonly used
mechanism to obfuscate malicious code. As browsers
automatically decode the HTML traffic and execute
them, simple text filters may fail to recognize XSS
payloads in a different encoding scheme. More precisely,
the obfuscated strings can be overshadowed by multiple
ways of encodings: Hexadecimal, Decimal, Octal,
Unicode, Base64, and HTML reference characters. For
example, generating a sequence of the special character
“%” followed by two hexadecimal digits is used to
represent the alphanumerical characters in the range of
[a-z, A-Z, 0-9] and some special characters, which is
called URL reference encoding. As in the second
example in Table 3, ‘%77’ represent ASCII Value ‘w’
followed by ‘%2E’ as ‘.’ Although such encoding is
sometime found in non-malicious JavaScript code,
obfuscation using alternative encodings is widely used
in XSS attacks.

Table 3. Character references

En
co

di
ng

 T
yp

e

HTML-
Encoded

<IMG
SRC=java
15;cript
;:aler&
#116;('XSS
')>

Original
URL-
Encoded

<A
HREF="http://%77%77%77%2E%67
%6F%6F%67%6C%65%2E%63%6F
%6D">XSS

Original XS
S

ASCII-
Encoded

<IMG
SRC=javascript:alert(String.fromChar
Code(88,83,83))>

Original <IMG
SRC=javascript:alert(String.fromChar
Code(XSS))>

In addition to using different encoding schemes as in

Table 3, obfuscation can also be done by inserting
redundant characters to opening and closing of tags.
Since the browser ignores the extra characters and
automatically corrects the code, the presence of these
characters may indicate the potential existence of XSS.

4.3.3. Parsing. A parser tokenizes a string based on the
following rules:
1) Replace digits with blank space;
2) Replace any value that only contains characters in

ranges of [a-z] or [A-Z] with blank space;
3) Replace special characters other than those in {'.',

'_', '-', ':', '@', '/', '='} with blank space;
4) Move the content in the parentheses as in {(), [], <>}

to the back of them;
5) Remove blank spaces and empty tokens;
6) Substitute network location by ‘domain’ and

directory by ‘path’ for the normal GMM model;
7) Remove network locations for the XSS GMM

model.
As shown in Table 4, these rules remove non-critical

value, such as in ‘Page=2’, ‘alert('XSS')’ and
‘String.fromCharCode(‘XSS’)’ and keep special
characters used in critical JavaScript methods or
interpreter, such as ‘query=’, ‘alert()’,
‘document.cookie’, and ‘onclick()’. Then they move out
the parameter from the JavaScript function for further
analysis as it may also contain special structure, e.g.,
‘javascript:alert(String.fromCharCode())’ is changed
to ‘javascript:alert()’ and ‘String.fromCharCode()’.
The resulting tokens are used to represent an instance of
requests and responses for further processing.

Table 4. Example of tokenizing a web request
Request http://www.m86security.com/support/searh/S

iteSearch.asp?query=Search...&Product='"-
-></style></script><script>alert('XSS')</scri
pt>&Page=2?<IMG SRC=javascript:alert(
String.fromCharCode(‘XSS’))>

Token ['domain', 'path', 'query=', 'Search...',
'Product=', 'alert()', 'Page=',
'javascript:alert()','String.fromCharCode()']

Finally, we substitute the network location by

‘domain’ and ‘path’ only for normal GMM model. The
XSS GMM model focuses on tokens unique to XSS
attacks. The network location tokens of ‘domain’ and
‘path’ are common to all URL payloads, which are not
useful to the XSS model. However, the normal GMM
model establishes the normal profile. Thus, we only use
‘domain’ and ‘path’ for the normal model.

4.3.4. Vectorization. We use the Word2vec technique
to convert each word to a corresponding vector value.
The Word2vec model is trained on complete instances
of requests and responses, containing all possible tokens.
The input is formatted as a list of token sequences after
the pre-processing steps. The number of dimensions is
set to 200, a common choice for this parameter. For each
token, Word2vec will output its corresponding unique
vector, with one example shown in Figure 4.

Figure 4. Partial vector for the token ‘alert()’

A vector represents the position of a token in the

vector space based on its relationship with other tokens.
In other words, two closely related tokens should
possess neighboring positions for their closeness. Then,
for each web transaction that contains multiple tokens,
we calculate the average of these vectors to represent
this instance, as the input to the GMM model.

4.4. Training and testing

In training, payloads of XSS or normal transactions
are processed into vectors as input to a GMM model.
The number of components varies from 1 to 10.

In testing, the GMM model generates a probability
score that represents the likelihood of a testing instance
belonging to any subpopulation of the training dataset.
This output score is in the form of log probability. Then
we can set up a threshold for classification. For example,
if the model is trained on XSS data then the higher this
score is, the more likely the tested observation is XSS.
The classification rule is that if the score is greater than
a set threshold, this instance is classified as an XSS
attack; otherwise it is classified as a normal instance.

4.4.1. Two detection models. Our approach uses two
GMM detection models. These two models include the
one trained with only XSS dataset and the other trained
with only normal dataset. Another difference of these
two detection models is that the network location
tokens of ‘domain’ and ‘path’ are only used for the
normal GMM model.

4.4.2. A dual model to integrate the two detection
models. The two GMMs are tested on a same testing

dataset that contains both XSS and normal instances.
Ideally, these two models should give the same result,
i.e., one is true and the other is false, since the ground
truth of this instance is either normal or malicious.
However, there may be instances that possess similarity
to both normal and XSS instances in the training
datasets. Intuitively, a consensus decision made after
reconciling these two scores may improve the detection
performance, lowering the false positive rate and the
false negative rate at the same time.

In a dual model, we combine these two scores for a
testing instance from the two GMM models by
calculating their difference 𝐶 = 	𝑙𝑜𝑔	𝑃1 	− 	𝑙𝑜𝑔	𝑃0	 ,
where P1 represents the probability score from the XSS
model, and P0 represents the probability score from the
normal model. We then vary a control threshold on this
difference in order to classify the instance into either a
normal or XSS class.

5. Performance evaluation

5.1. Experiment setting

The dataset includes all available web transaction
instances in the XSSed and Web09 databases. The sizes
of the training and testing datasets used for XSS and
normal GMM models are summarized in Table 5. These
training and testing instances are randomly selected.

We use Receiver Operating Characteristic (ROC)
curve plots to evaluate detection models of different
settings. A ROC curve is obtained by displaying pairs of
True Positive Rate and False Positive Rate. The True
Positive Rate is the ratio of the number of true positives
to the total number of XSS instances; the False Positive
Rate is the ratio of the number of false positives to the
total number of normal instances. A common measure
of the goodness of a ROC curve is the Area under the
Curve (AUC), which is also used in our analysis.

Table 5. Training and testing datasets

Dataset XSS Normal Total
Training 35884 24561 60445
Testing 10000 10000 20000

5.2. Single-stage models using web request

For models using web request information only
shown in Figure 5, the normal model seems to have
perfect performance with regard to AUC value. On the
other hand, the performance of XSS model is not
satisfying. This can be explained by a significant
difference between methods of XSS request processing.

(a) Normal model

(b) XSS model

Figure 5. Single-stage detection models using
only web requests

From Table 6, we notice that a normal request is very

“simple” compared to an XSS request. Instead of having
a query in form of “srch="><script>
alert(document.cookie)</script>&x=0&y=0” in an
XSS request, the normal request only has a network
location. Such contrast can be found extensively.

Table 6. Normal and XSS request examples
 Normal Request XSS Request
Original http://1.assets.lingr

.com/room/l1ty5ap
5ItK/related

http://www.iiar-
anticancer.org/search.
php?srch="><script>
alert(document.cooki
e)</script>&x=0&y=
0

Input to
Normal
Model

[‘domain’,’path’] [‘domain’,’path’,’src
h=’,’alert()’,’docume
nt.cookie’,’x=’,’y=’]

Input to
XSS
Model

[] [’srch=’,’alert()’,’doc
ument.cookie’,’x=’,’
y=’]

Most of the normal request vectors consist of only

‘domain’ and ‘path’ tokens. Dominating the testing
input, the normal detection model can easily recognize

XSS requests. However, this is not the case for XSS
instances. Such normal requests do not capture useful
tokens like ‘alert()’ or ‘document.cookie’ in more
complex requests, which results in an empty list when it
is fed to the XSS model. In fact, the testing dataset only
has 22 non-empty input when feeding XSS model,
which is shown in Table 7. Hence, testing results of
single-stage detection models using web requests only
are not meaningful in general.

Table 7. Web requests for testing

 Valid XSS
Instance/Total

Valid Normal
Instance/Total

Normal Model 10000/10000 10000/10000
XSS Model 9853/10000 22/10000

5.2. Single-stage models using web response

In contrast, a web response has much richer

information than a web request as shown in Table 8.
Such a response may contain multiple tokens that are
useful for both normal and XSS models.

Table 8. Normal and XSS response examples

 Normal Response XSS Response
Original <!DOCTYPE HTML

PUBLIC "-//W3C//
DTD HTML 4.01
Transitional//EN"
"http://www.w3c.org/
TR/1999/REC-
html401-
19991224/loose.dtd">
<HTML><HEAD>…

<!DOCTYPE
html PUBLIC '-
//W3C//DTD
XHTML 1.0
Transitional//EN'
'http://www.w3.or
g/TR/xhtml1/DTD
/xhtml1-
transitional.
dtd'><html
xmlns='http://ww
w.w3.org/1999/xh
tml' >…

Input to
Normal
Model

['javascript:copyit()',
'document.getElement
ById()', '.value']

['homePage= ',
'alert()',
'document.cookie'
]

Input to
XSS
Model

['javascript:copyit()',
'document.getElement
ById()', '.value']

[’srch=’,’alert()’,’
document.cookie’,
’x=’,’y=’]

Table 9. Web responses for testing

 Valid XSS
Instance/Total

Valid Normal
Instance/Total

Normal Model 9398/10000 7544/10000
XSS Model 9398/10000 7544/10000

As in Table 9, web responses generate sufficient

testing instances for both the normal and XSS models.

(a) Normal model

(b) XSS model

Figure 6. Single-stage detection models
using only web response

The ROC curves and AUC scores for these models

in Figure 6. Overall, it seems that normal detection
models are better than XSS models in detection. And the
number of components in a GMM model has an impact
on the detection performance. However, increasing the
components does not always improve the performance.
As shown in Figure 6, the AUC score for 3 components
is lower than that for 2 components.

5.3. Multi-stage and dual detection models

Multi-stage detection models correlate web response
and response tokens as in their input. Figure 7 shows the
performance of detection models using both web request
and response with different numbers of components. In
comparison to the single-stage models in Figure 6, there
is an improvement in their performance with respect to
the AUC scores.

(a) Normal model

(b) XSS model

Figure 7. Multi-stage detection models
using both requests and responses

We test dual models by integrating the two scores

from the XSS and normal GMM models. We can do this
for single-stage models and multi-stage models
respectively. We select the number of components
having the best performance in this process. Figure 8(a)
shows that the single-stage dual GMM model
outperforms the comparable individual single-stage
models in Figure 6. Figure 8(b) shows that the multi-
stage dual model is better than those individual multi-
stage models in Figure 7.

(a) Single-stage dual model using only web responses

(GMM with 9 components)

(b) Multi-stage dual model using both requests and

responses (GMM with 10 components)

Figure 8. Dual detection models integrating
normal and XSS models

There are enough XSS and normal instances in these

testing results. We are comfortable to draw the
conclusion that multi-stage and dual detection models
can improve the accuracy of XSS attack detection.

5.4. Limitation of the results

However, as also showed in several other studies
[10], [11], [17] and [18] that use malicious scripts from
the XSSed project and very different benign scripts from
Dmoz or ClueWeb09, some of the results are too good
to be convincing. Therefore, testing out approach on
more realistic traffics may yield more useful findings. A
couple projects collected large datasets that can be very
useful on this front as in [19] and [20]. We can continue
to investigate this approach by studying better data
collection and feature extraction techniques.

6. Conclusion

Most of the existing solutions of detecting XSS

attacks examine the evidence in only one stage. We have

studied an approach that looks at the information in both
request and response stages and employs a dual model
of combining anomaly detection with misuse detection.
This approach utilizes the Word2vec technique and
Gaussian mixture models. Evaluation using real data
coming from two databases of XSS and normal web
transactions has shown its effectiveness.

7. Acknowledgement

This work has received partial support from NSF
through Award No. 1525485. We like to thank Qiqing
Huang, Bayan Al Muhander and Likitha Satish from
Johns Hopkins University Information Security Institute
for their effort in a previous relevant project.

1525485.
8. References

[1] K. Spett, “Cross-site scripting”, SPI Labs, 2005, pp. 1-20.
[2] “Top10-2017 Top 10”, 2017. [Online]. Available:
https://www.owasp.org/index.php/Top_10-2017_Top_10.
[Accessed: 30- Dec- 2017]
[3] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J.
Dean, “Distributed Representations of Words and Phrases and
their Compositionality”, NIPS, Lake Tahoe, NV, 2013, pp.
3111-3119.
[4] “XSS Filter Evasion Cheat Sheet”. [Online]. Available:
https://www.owasp.org/index.php/XSS_Filter_Evasion_Chea
t_Sheet. [Accessed: 30- Mar- 2018]
[5] R. Katipally, L. Yang, and A. Liu, “Attacker behavior
analysis in multi-stage attack detection system”, Proceedings
of the Seventh Annual Workshop on Cyber Security and
Information Intelligence Research (CSIIRW’11), New York,
NY, USA, 2011, No. 63.
[6] D.H. Lee, D.Y. Kim, and J.I. Jung, “Multi-Stage Intrusion
Detection System Using Hidden Markov Model Algorithm”,
ICISS, Seoul, 2008, pp. 72-77.
[7] U.S.K.P.M. Thanthrige, J. Samarabandu, and X. Wang.
“Intrusion Alert Prediction Using a Hidden Markov Model”,
arXiv:1610.07276, 2016.
[8] A. Almutairi, D. Parish and J. Flint, “Predicting multi-stage
attacks based on IP information”, ICITST, London, 2015, pp.
384-390.

[9] L. Yan, “Machine learning for the web security”,
Mechanical Industry Press, 2017.
[10] Y.H. Wang, C.H. Mao, and H.M. Lee, “Structural
Learning of Attack Vectors for Generating Mutated XSS
Attacks”, TAV-WEB, 2010.
[11] R. Pelizzi, and R. Sekar, “Protection, Usability and
Improvements in Reflected XSS Filters”, ASIACCS 2012,
New York, NY, 2012.
[12] T. Pietraszek, C.V. Berghe, “Defending against injection
attacks through context-sensitive string evaluation”, Recent
Advances in Intrusion Detection, Berlin, Heidelberg, 2005, pp.
124–145.
[13] S. Goswami, N. Hoque, D.K. Bhattacharyya, and J.K.
Kalita, “An Unsupervised Method for Detection of XSS
Attack”, I. J. Network Security, 2017, pp. 761-775.
[14] A. L. Buczak and E. Guven, “A survey of data mining
and machine learning methods for cyber security intrusion
detection”, IEEE Communications Surveys & Tutorials, 2016,
pp. 1153–1176.
[15] N. Moustafa, G. Creech, and J. Slay, “Big data analytics
for intrusion detection system: Statistical decision-making
using finite dirichlet mixture models”, Data Analytics and
Decision Support for Cybersecurity, 2017, pp. 127–156.
[16] N. Moustafa, G. Misra and J. Slay, “Generalized Outlier
Gaussian Mixture technique based on Automated Association
Features for Simulating and Detecting Web Application
Attacks”, IEEE Transactions on Sustainable Computing,
2018.
[17] Y. Fang, Y. Li, L. Liu, and C. Huang, “DeepXSS: Cross
Site Scripting Detection Based on Deep Learning”,
Proceedings of the 2018 International Conference on
Computing and Artificial Intelligence (ICCAI 2018), New
York, NY, 2018, pp. 47-51.
[18] F.A. Mereani, and J. M. Howe, “Detecting Cross-Site
Scripting Attacks Using Machine Learning”, Advances in
Intelligent Systems and Computing, Cham, 2018, pp. 200-210.
[19] N. Moustafa, and J. Slay, “UNSW-NB15: a
comprehensive data set for network intrusion detection
systems (UNSW-NB15 network data set)”, Military
Communications and Information Systems Conference
(MilCIS), 2015.
[20] N. Moustafa, and J. Slay, “The evaluation of Network
Anomaly Detection Systems: Statistical analysis of the
UNSW-NB15 data set and the comparison with the KDD99
data set”, Information Security Journal: A Global
Perspective, 2016, pp. 1-14.

