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Abstract

Traditional authentication systems offer ease of use but the security they provide
often proves to be inadequate. Hackers use means to gain access to company servers
and steal entire databases of password hashes. These hashes are then subject to offline
dictionary attacks resulting in the disclosure of millions of passwords. Such password
breaches have become commonplace and have caused several major companies to face
major losses. Password reuse is a common practice among users and a password breach
disclosing a single password on a particular service could result in a user also losing
access to their other accounts. Solutions such as multi-factor authentication add some
level of security but do not completely solve the problem. There is a need to move
towards stronger authentication schemes that do not compromise on ease of use, both
for the user and the service provider.

In this paper, we propose a novel authentication protocol that is proven hard against
offline dictionary attacks. Our protocol implements a combination of a Zero Knowledge
Password Proof and a sequentially memory hard hash function. In a concrete instan-
tiation of the protocol, we use Schnorr’s Zero Knowledge Password Proof combined
with the Fiat-Shamir Heuristic for the Zero Knowledge Password Proof and scrypt for
the sequentially memory hard hash function. We also describe a library implementing
our protocol that we have developed along with an example web application that uses
the library. Lastly, we provide performance tests for the various components of our
protocol and show that the protocol is extremely efficient.

1 Introduction

The most commonly used method of authenticating a user involves a user chosen
password that is sent to a server, which then computes the hash of the password and
stores it securely in a database along with a randomly generated salt value. This type
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of authentication system has been in use for several years and has become the default
standard in the industry. While this approach to authentication can be considered
safe and acceptable in some cases, it has several major drawbacks. Service providers
often make errors while implementing this kind of authentication system. These errors
can range from not using a strong hashing algorithm to not storing the password with
a salt value. Attackers then use other methods to steal entire databases of password
hashes and perform successful brute force or dictionary attacks with minimum effort.
Large corporations such as LinkedIn and Sony Pictures have made errors of this nature
in recent years and have become victims of enormous password breaches resulting in
major losses [Kam12, Fei14]. However, even under the most ideal conditions, it has
been observed that even strong hashes of passwords used along with salts can be cracked
using a password cracker such as hashcat [Has16] and efficient hardware resources such
as Graphics Processing Units (GPUs). The problem here is that currently accepted
strong hashing algorithms such as the SHA family of algorithms or even MD5 are
extremely fast. These hash algorithms were initially designed to be computationally
fast because they were designed to quickly check data integrity rather than for password
storage purposes. As such, there is a need to shift towards more memory intensive and
slow hashing algorithms such as PBKDF2, bcrypt, scrypt and Argon2. [Hun12] These
algorithms fall under a category of algorithms called Password-Based Key-Derivation
Functions which will be discussed later in the paper.

There are also other factors that directly affect the security of authentication sys-
tems. These factors include the availability of a trusted third party and a secure
transmission network. For these purposes, several stronger authentication protocols
have been proposed that try to solve the issue of passwords being stolen as a result of
server compromise. The common goal that these protocols try to achieve is preventing
the transmission of passwords over the wire and/or storage of passwords in a hash
database.

In doing so, these protocols can ensure that the password is never made available
to a third party. In other words, if a user A authenticates itself to a server B, then
the server B or a malicious third party C cannot re-use the credentials of A to au-
thenticate themselves. These types of authentication protocols achieve this by using
the concept of a user sharing knowledge of a secret with the verifying server instead of
sharing the secret itself. One way of doing this is using some form of challenge-response
mechanism to authenticate the user. In this kind of authentication scheme, the au-
thentication server sends the user a challenge (usually just a random byte sequence)
and the user computes a cryptographic function on this challenge along with the secret
held by them and sends it back to the server. The server verifies the value computed by
the user and authenticates the user if the value matches the one stored on the server.
The cryptographic function used in such protocols can be based on Message Authen-
tication Codes for private-key systems and Digital Signatures for public-key systems.
Kerberos [NT94] and the Needham-Schroeder protocol [NS78] are examples of this kind
of authentication system. These challenge-response schemes can however reveal some
partial information to an adversary who can try to select chosen challenges and obtain
information from the responses to them.

To solve this, authentication protocols employ a stronger form of authentication
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schemes called Zero Knowledge identification schemes. Zero Knowledge schemes allow
a prover (user) to prove knowledge of a secret while not revealing any information
about the secret itself to the verifying server. This type of authentication scheme is
safe to use when a user does not want to trust the server with their password. This,
in turn, also prevents any adversarial third party from stealing the password from the
server. There are several Zero Knowledge identification schemes in existence such as
the Feige-Fiat-Shamir identification protocol [FFS88], the Guillou-Quisquater identifi-
cation protocol [GQ88] and the Schnorr identification protocol [Sch91]. These protocols
are often called Zero Knowledge Password Proofs (ZKPP). ZKPPs are used in conjunc-
tion with other secure methods to make a newer and stronger type of authentication
protocols called Password- authenticated key agreement protocols. [AMV96]

Password-authenticated key agreement (PAKE) is a cryptographically secure method
where two parties can establish a shared cryptographic key based on the condition that
one or more parties has knowledge of a password. Augmented PAKE protocols are a
type of PAKE that are more specific to client/server authentication scenarios. Aug-
mented PAKE protocols have the unique property where the data stored by the server
is not plaintext-equivalent to the password chosen by the user. This means that an
attacker cannot directly use credentials stolen from the server to login. Instead, the
attacker would have to perform a brute force on the password itself which can be solved
easily using methods such as rate limiting. Common examples of Augmented PAKE
protocols are Secure Remote Password(SRP) [Wu97], Augmented EKE [SMB16] and
B-SPEKE [Jab96].

2 Literature review

2.1 Secure Remote Password (SRP) Protocol

The SRP protocol is a PAKE protocol first proposed by Thomas Wu from Stanford
University. The SRP protocol is ideal for authentication over an untrusted network. It
is based on a new construction which the author calls Asymmetric Key Exchange. This
construction exchanges keys between the client and the server and uses this key to verify
that both parties have knowledge of their passwords. Asymmetric Key Exchange does
not perform any kind of encryption on any of the protocol flows. It uses predefined
mathematical relationships and combines the exchanged ephemeral values with the
defined password parameters. The security of SRP relies on the hardness of Discrete
Logarithms and requires the use of a safe prime of the form n = 2p + 1 where p is a
large prime number. SRP is also significantly faster than other comparable PAKEs.
The SRP protocol’s working can be briefly described in the following steps:

1. The user sends their username to the server.

2. The server looks up the user’s password entry and fetches the corresponding
password verifier v and salt s and sends s to the user.

3. The user computes their private key x using s and password P .

4. The user generates a random number a, computes an ephemeral public key A,
and sends it to the server.
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5. The server generates a random number b, computes an ephemeral public key B,
and sends it back to the user, along with the randomly generated parameter u.

6. The user and the server compute the common exponential value S using the
values available to them.

7. Both the user and the server hash the exponential S into a cryptographically
strong session key.

8. The user sends the server M [1] as evidence that they have the correct session
key, where M [1] is the hash of the corresponding public keys of the user and the
server, and the session key.

9. The server computes M [1] and verifies that it matches the user’s value.

10. The server sends the user M [2] as evidence that it has the correct session key. The
user also verifies M [2], accepting it only if it matches the server’s value, where
M [2] is the hash of the public key of the user, M [1] and the session key.

The protocol is resistant to active dictionary attacks [Wu97]. The issue with the
SRP protocol is that it does not provide complete protection against offline dictionary
attacks. The password hash is not computed using a memory-intensive function which
makes it susceptible to password cracking using very inexpensive hardware. If an
adversary gains access to the statement that is stored on the server, they can brute
force using a dictionary of passwords and be able to guess and retrieve the password
in a reasonable amount of time.

2.2 Password-Based Key-Derivation Functions

Password-Based Key-Derivation Functions (PBKDF) are key derivation functions that
can derive one or more cryptographic keys from a password. These Password-Based
Key-Derivation Functions are intended to be computationally intensive, so that they
take longer to compute than commonly used one-way hash functions, adding hundreds
of milliseconds or more to the computational time. The advantage of using these func-
tions for authentication purposes is that a user who has knowledge of their password
will only make the function computation once or a couple of times. However, an at-
tacker trying to guess the password using brute force techniques will have to compute
the function several billions of times, at which point the time it requires to compute
all possibilities for a single password becomes completely restrictive. Brute-force and
dictionary attacks thus become non-feasible, provided that the password is not easy to
guess and is stored along with a salt. There are several widely accepted Password-based
key derivation functions such as bcrypt [NP99], Argon2 [AB15] and scrypt [Per09]. The
issue with some password-based key derivation functions is that while they are time-
intensive, they are not necessarily memory-intensive. These functions do not have high
resource demands. As a result, functions such as PBKDF2, introduced by RSA Lab-
oratories, can be implemented using hardware such as Application-specific integrated
circuits (ASIC) and Field-programmable gate arrays (FPGA) which are relatively cheap
to obtain. This allows an attacker to implement the key derivation function in hard-
ware and parallelize their attack on a large scale to search on various parts of the key
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space. This could potentially reduce the time frame to one that is feasible and make
the entire attack not too financially prohibitive. [Per09]

Scrypt is a type of Password-based key derivation function which is designed to
have higher memory resource usage demands compared to others. This can greatly
limit the kind of large scale parallel attacks that an attacker could deploy due to much
greater financial resource requirements. Scrypt does this by implementing a kind of
time-memory trade-off. The algorithm generates a large vector of pseudorandom bit
strings. Each element of the vector can be generated dynamically and stored only
one at a time in memory. However, the generation of each element is computationally
expensive which makes this infeasible. Moreover, each element of the vector is accessed
by the algorithm multiple times during its execution life cycle. Thus, for an attacker to
reduce the memory requirements, they would have to deal with a significant trade-off
in the time required. The attacker either has to make a hardware implementation with
very heavy memory resources to run the algorithm faster or the attacker has to rely on
a much slower algorithm if they do not have the required memory resources. Scrypt is
thus ideal for use as a hashing algorithm in an authentication system. [ACP+16]

3 Preliminaries

First, we will look at the following two concepts that we need for our construction.
We need sequential memory-hard functions as described in [Per09]. These are efficient
functions to protect passwords against dictionary attacks, as these functions are con-
figurable to keep up with the ever improving hardware. The second concept that we
need is zero-knowledge proofs of knowledge, which is a protocol where the client will
prove to the server that it knows the password without revealing the password directly
to the server.

3.1 Sequential memory-hard functions

The concept of sequential memory-hard functions was first described by Percival in [Per09].
He introduces this novel technique to reduce the attackers advantage of being able to
parallelize the computations. This is done by adding the use of more RAM, therefore,
while computing power is often easily and cheaply available (by using GPUs), it is
much more expensive to provide enough RAM for parallel computations that require
large amounts of memory.

To parameterize not only the operation count, but also the memory usage, Percival
introduced the following definition:

Definition 1 A memory-hard algorithm on a Random Access Machine is an algorithm
which uses S(n) space and T (n) operations, where S(n) ∈ Ω(T (n)1−ε).

Such an algorithm uses roughly the same amount of memory space as it uses operations.
This balance ensures the efficiency for normal users, because they have enough memory
available for one such computation, but makes it much harder to do a brute-force attack,
where a lot of memory is needed for all the operations that need to be performed.
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There exist methods to translate an algorithm that uses memory, into an algorithm
that uses more operations. Therefore, a memory-hard algorithm might still be highly
parallelizable. To mitigate this problem, Percival introduces the following definition of
a sequential memory-hard function:

Definition 2 A sequential memory-hard function is a function which

(a) can be computed by a memory-hard algorithm on a Random Access Machine in
T (n) operations; and

(b) cannot be computed on a Parallel Random Access Machine with S∗(n) processors
and S∗(n) space in expected time T ∗(n) where S∗(n)T ∗(n) = O(T (n)2−x) for any
x > 0.

This means that not only is the fastest sequential algorithm memory-hard, but any
parallel algorithm cannot significantly decrease the running time.

The construction that Percival introduces is called scrypt, and is efficiently imple-
mented in most languages, which makes this a very good candidate to use for our
construction. Moreover, scrypt has been proven maximally memory-hard by Alwen et
al. [ACP+16].

In the meantime, some other memory-hard functions were invented and these can
all be used to implement the protocol that is presented in this paper. [BDK15, BK15]

3.2 Zero-knowledge proofs of knowledge

Zero-knowledge proofs were first introduced in 1989 by Goldwasser, Micali, and Rack-
off [GMR85]. It is a cryptographic protocol between two parties, a prover and a verifier,
in which the prover convinces the verifier that a certain statement is true, without re-
vealing any other information. It was proven that there exist zero-knowledge proofs
for all languages in NP. This means that given a statement x ∈ L, where L is an
NP-language, the prover who has a witness w for x can prove to the verifier that x ∈ L
without revealing any information about the witness w.

Definition 3 (Interactive Zero-Knowledge Proof) A pair of ITMs (P, V ) is an
interactive zero-knowledge proof system for a language L if P and V are PPT machines
and the following properties hold:

• Completeness: For every x ∈ L,

Pr [OutV [P (x)↔ V (x)] = 1] = 1

• Soundness: There exists a negligible function ν() s.t. ∀x 6∈ L and for all adver-
sarial provers P ∗,

Pr [OutV [P ∗(x)↔ V (x)] = 1] ≤ ν(|x|)

• Zero-knowledge: for every non-uniform PPT adversary V ∗, there exists a PPT
simulator S such that for every non-uniform PPT distinguisher D, there exists
a negligible function ν(.) such that for every x ∈ L,w ∈ R(x), z ∈ {0, 1}∗, D
distinguishes between the following distributions with probability at most ν(n):

{V iewV ∗ [P (x,w)↔ V ∗(x, z)]} and {S(1n, x, z)} .
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This notion was extended to Non-Interactive Zero-Knowledge proofs which are pre-
ferred in most applications. In our setting we use a more specific proof system which
is known as a proof of knowledge. Where the prover convinces the verifier he knows a
certain secret x, such as a password.

To denote these protocols we will use the notation that was introduced by Ca-
menisch and Stadler [CS97]. For example, PoK{(x) : y = gx} denotes a zero-knowledge
proof of knowledge of an integer x such that y = gx holds, where everything on the
left side of the colon is secret, while all other variables that occur on the right side are
considered public.

In our instantiation we will use the more specific Schnorr protocol [Sch91], for the
following system:

PoK{(x, y) : z = gxhy},

more precisely y will be of the form f(x) for a certain function f . However, our
protocol can be instantiated with any zero-knowledge proof of knowledge of which
there are plenty of efficient examples in the literature [GS07, BCKL08, CDS94, Bra97,
CNS07, CCS08, Bou00, Gro06].

3.2.1 Schnorr’s Proof of Knowledge [Sch91]

Given a cyclic group Gq or order q, a generator g for this group, and y = gx, Schnorr’s
protocol proceeds as follows:

Schnorr’s protocol

Prover Verifier

r
$←− Z

t = gr t

c c
$←− Z

s = r + cx s accept if gs = tyc

This structure is also what is called a Σ-protocol, because it has three rounds:

• Commitment phase: where the prover commits to a certain value

• Challenge phase: the verifier sends a challenge to the prover

• Opening phase: the prover opens the commitment based on the challenge

The good thing about such a Σ-protocol is that by using the Fiat-Shamir heuris-
tic [FS87] one can translate the protocol in a non-interactive version by using a hashed
version of the commitment instead of the challenge. This heuristic can only be proven
secure in the random-oracle model. For more details about this heuristic see [FS87].
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4 Definitions

We propose the following definition for zero-knowledge password proofs that are hard
against offline dictionary attacks. We denote the password proof by the triplet (K,C, S),
where K is the setup algorithm, C is the client side of the protocol and is the same
as the prover for the password proof, and S is the server side and corresponds to the
verifier in the password proof.

Definition 4 (ZKPP hard against offline dictionary attack) Given a password
proof

(K,C, S),

we say it is hard against offline dictionary attacks if it has the following properties:

• (Hard against eavesdropper) The password proof has the zero-knowledge prop-
erty, i.e.: for every non-uniform PPT adversary S∗, there exists a PPT simulator
S such that for every non-uniform PPT distinguisher D, there exists a negligible
function ν(.) such that for every x ∈ L,w ∈ R(x), z ∈ {0, 1}∗, D distinguishes
between the following distributions with probability at most ν(|x|):

{V iewS∗ [C(x,w)↔ S∗(x, z)]} and
{
S(1|x|, x, z)

}
.

• (Hard against server compromise) Given the information on the server side
dS, i.e. all information that is stored on the server side. For every non-uniform
PPT adversary A, there exists a negligible function ν(.) such that:

Pr[A(D, dS) = x] ≤ ν(|D|),

where D is a dictionary for x, and:

Expected running time of A &
|D|
2
T (|x|),

where T (.) is the running time of the proof system.

• (Hard against client compromise) Given the information on the client side
dC , i.e. all information that is stored on the client side. For every non-uniform
PPT adversary A, there exists a negligible function ν(.) such that:

Pr[A(D, dC) = x] ≤ ν(|D|),

where D is a dictionary for x, and:

Expected running time of A &
|D|
2
T (|x|),

where T (.) is the running time of the proof system.

Note that for data on client side dC , we only consider data that is stored by the protocol,
in particular, we do not consider storage of the password by the user’s themselves. This
last property might seem a little strange, as in a general authentication protocol usually
there is no information stored on the client side. Nevertheless, in our construction we
cache certain data on the client side for performance reasons, therefore, we need to
prove security when this data is leaked.
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5 Protocol

First we define the following algorithms:

• Prep(x, s): The input to this algorithm is a password x, and a random salt s, it
will output F (x‖s) with F (.) a one-way function.

• Gen(1n, x): This algorithm takes a password x as input. It first generates a
random salt s. Then, it generates a statement z for a proof of knowledge for
witnesses x and y = Prep(x, s). Note that z should be in an NP language, which
is not in P. The algorithm outputs (z, s)

• Proof((x, y), z): This algorithm creates a proof of knowledge Π for the statement
z, given the witness (x, y).

• Verify(Π, z): This algorithm takes as input a proof Π for the statement z, and
outputs 1 if the proof is valid, and 0 otherwise.

Using these algorithms we create the following protocol:

Registration

Client Server
I: Identity

x: password

s
$←− {0, 1}n: random salt

z statement for proving

knowledge of

x and Prep(x, s)

(I, s, z) Store(I, s, z)
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Authentication

Client Server
I: Identity

I

Lookup(I) = s

s

x→ Prep(x, s)

Store s‖Prep(x, s)

on trusted devices

Prove knowledge of x and Prep(x, s)

Note that the operations done by the client on registration can be grouped in the
algorithm Gen as described before. The proof of knowledge in the last step is done by
the algorithms Proof and Verify.

Given the above protocol we proof the following theorem:

Theorem 1 Given a password x, and the algorithms as defined above. Then, the
given protocol is a zero-knowledge password proof that is hard against offline dictionary
attacks, if the algorithms have the following properties:

• Efficiency: The algorithms Proof((x, y), z) and Verify(Π, z) are efficient.

• Hardness against offline dictionary attacks: Prep(., .) is a sequential memory-
hard function.

• Hiding: Prep(., .) is a one-way function

• Zero-knowledge: (Π = Proof((x, y), z),Verify(Π, z)) is a zero-knowledge proof
system.

Proof.
We will prove the different properties of a ZKPP that is hard against offline dictio-

nary attacks:

Password Proof First, note that by correctness and soundness of the proof of
knowledge, we derive correctness and soundness of our protocol. The efficiency prop-
erty of the algorithms Proof and Verify provide the efficiency of the authentication
process, therefore, we can conclude that this protocol is an efficient password proof.

Hard against eavesdropper For every non-uniform PPT adversary S∗, we con-
struct a PPT simulator S′ in the following way:
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Input: (z, (I, s)), where z is the statement of the proof of knowledge and (I, s) is auxiliary
input, as these values are public values.

(1) Output I the auxiliary information

(2) Receive (s′, z′) from the adversary, check if z′ = z and s′ = s, if not output ⊥
(3) Use the simulator S for the proof of knowledge.

First, note that the simulator S in step (3) exists, because of the zero-knowledge prop-
erty of the proof of knowledge. Second, because the input to the simulator should be
valid, the first round of the protocol is identical with the real protocol. Therefore, by
the indistinguishability of the simulator S with the real proof of knowledge, we can
conclude that S′ is also indistinguishable from the real protocol.

Hard against server compromise The information stored on the server side
is (I, s, z), given the fact that z is an element of an NP language that is not in P,
we can assume that the best approach to find x is a brute-force attack (Note that
I and s do not contain any information about x). The best way to do this is to
create pairs (x,Prep(x, s)) and check if z = gxhPrep(x,s). Given a dictionary |D|
for possible passwords, an adversary is expected to find the password after |D|2 tries.
Because the function Prep(x, s) is a sequential memory hard function, this will define
the running time of the whole protocol. Therefore, we can say that the running time
of Prep(x, s) ≈ T (|x|), where T (.) is the running time of the protocol. Hence, the

expected running time of the adversary is greater than or equal to |D|2 T (|x|).

Hard against client compromise The only information that is possibly stored
on the client side is the salt s and the function Prep(x, s). Again, brute force is the
only way given the one-wayness of Prep(., .). Therefore, similar to the previous step,
we can say that the running time of Prep(x, s) ≈ T (|x|), where T (.) is the running
time of the protocol. Hence, the expected running time of the adversary is greater or
equal to |D|2 T (|x|).

6 Instantiation

In our instantiation of the proposed protocol above, we use scrypt as the sequential
memory-hard function. This is the most well-known and has a lot of very good imple-
mentations in many different programming languages that are ready to use. Therefore,
this seemed the most appropriate choice.

For the proof of knowledge we use the zero-knowledge password proof of Schnorr [Sch91]
combined with the Fiat-Shamir heuristic [FS87] to make it non-interactive and decrease
the number of rounds in our protocol. We chose this proof system because of its sim-
plicity, which is in particular important on the client side, where one can expect less
computational power.

The whole construction has been described in the following diagrams:

11



Registration

Client Server
I: Identity

x: password

s
$←− {0, 1}n: random salt

y = scrypt(x‖s)
z = gxgscrypt(x‖s)

(I, s, z) Store(I, s, z)

Authentication

Client Server
I: Identity

I

Lookup(I) = s

s

x→ scrypt(x‖s)
Store s‖scrypt(x‖s)
on trusted devices

z = gxgscrypt(x‖s)

PoK{(x, scrypt(x‖s)) : z = gxgscrypt(x‖s)}

6.1 Implementation

We provided a library that implements our protocol. It exists of two parts, a client
side written in JavaScript [VDP16c] and a server side written in Java [VDP16a]. We
provided an example web application that shows how to implement an authentication
system using our library [VDP16b]. Note that we only showed how to do a simple
authentication, we did not show how to do proper session management afterwards, nor
did we put general protections against online dictionary attacks such as rate limiting
or limit the number of tries. We also did not provide a proper password policy. When
using our library, we still advice to use extra protections against online dictionary
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attacks, as well as a proper password policy, which can enlarge a possible offline dic-
tionary significantly. Best practices are well known and documentation on these issues
can be found easily online.

It is also important that all communication between the client and server happens
over a secure connection, using TLS for example. The information that can get leaked
by the protocol on the communication channel is not necessarily enough for an eaves-
dropper to learn the password, but it is information that a system better keeps secure.
Also, during registration the statement is sent from client to server, given this state-
ment an eavesdropper can start performing an offline dictionary attack. Although,
this attack will not be efficient as proved above, it is not impossible and should def-
initely be avoided. Luckily, the tools to protect the channel are easily available and
implementable by just setting up a server using TLS.

6.1.1 Client side

The implementation of the client side has been done in JavaScript, as we want to
focus first and foremost on web applications. Later, it would be beneficial to provide
library implementations in other languages such as Swift and Java to support mobile
applications too.

The JavaScript implementation contains two functions that can be called, namely
register and login. The first two functions are asynchronous and take a callback
function as their last parameter.

Calling register will perform the client side actions that need to be taken to do
the registration part of the protocol as described above. It takes as input a username,
password, and a boolean to denote if the user is currently on a trusted device. The
output of this function, passed on through the callback function is an object containing
all information needed on the server side. This object can be send to the back end
using a preferred implementation, in our example we use a REST-call containing a
JSON-object in the body.

login takes as input a username, password, salt, and a boolean to denote if the
user is currently on a trusted device. Note that the salt needs to be retrieved from
the server. In our example application we implemented a separate call to receive this
information. The login function will return an object that contains all the necessary
information to prove knowledge of the password and its hashed version. This object
needs to be send to the server for verification. Again, in our example app this is done
by a REST-call which contains the object that was returned by the library.

Note that these functions will take care of the cached version of the hash function
by themselves depending on the boolean resembling if it runs on a trusted device
or not. The only addition that one must make when using the library is the actual
communication with the server. Our implementation is optimized to make use of JSON
transcripts that can be send between client and server. We think the implementation
is very intuitive and easy to use, which was one of the important design goals.
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6.1.2 Server side

We wrote the server side using Java, given it is a very reliable language, and very
common in back end systems. Eventually, it would be nice if our library would also get
implemented in other common languages such as C type languages, and JavaScript.

The library itself only contains one API-call, named login. it takes as input a User

object and a Proof object.
The User object contains the user’s identification, the statement associated with

its password, and the salt that was used to compute the hash-function. Typically, this
information should be stored in a database in the back end and would be referred to
based on the user ID.

The Proof object, contains a commitment, an actual proof (sometimes called open-
ing of commitment), and a timestamp to avoid reusing the same proof transcript mul-
tiple times.

The login method will do a verification of the proof that was given as a parameter,
according to the statement that was passed along through the User object.

As shown in our example app, typically on registration the user information gets
stored in a database, which is mongoDB in our case. The server side should provide a
way to give out the salt that was stored for the user. In our example, there is a REST-
call that responds with the salt, given the user’s identification. Next, a login-call was
provided, taking in the necessary proof values, using this and the information from
the database, the login call of the library is invoked. When verification is correct, it
will respond with a 200 (OK) HTTP-status, and a 401 (Unauthorized) HTTP-status
otherwise.

6.2 Performance

Performance testing was conducted on the implementation of the proposed protocol to
establish a baseline performance metrics. Tests were performed using Jasmine [Lab16]
which is a behavior-driven development framework for testing JavaScript code.

Test Environment

All the tests were performed on the same base system for consistency with no other user
process running in background. Tests were repeated and results obtained are averaged
over 10 iterations.

Since the proposed protocol is implemented in JavaScript, there is an inherent
dependency on the browser used. Hence, benchmark tests were performed on Mozilla
Firefox, Google Chrome and Apple Safari browsers to establish baseline metrics on test
environment. For the purpose of this test, JetStream a JavaScript benchmarking suite
was used from [Jet16].
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System MacBook Pro (Retina, 15-inch, Mid 2015)
Operating System macOS Sierra Version 10.12.1
Processor 2.5 GHz quad-core Intel Core i7
Memory 16 GB 1600 MHz DDR3
Graphics AMD Radeon R9 M370X 2048 MB

Intel Iris Pro 1536 MB
Browser Google Chrome Version 55.0.2883.75 (64-bit)

Mozilla Firefox Version 50.0.1
Apple Safari Version 10.0.1

Table 1: Specifications of test environment

Figure 1: Chrome performance on test environment.

15



Figure 2: Firefox performance on test environment.

Figure 3: Safari performance on test environment.

Library

The library performs multiple operations and computations. We have tested the speed
of the library for following operations: registration, login, computing random salt,
compute hash, cache hash, create statement, translate string to number and create
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proof. Since Scrypt is the only time consuming operation, we have grouped and tested
all non-scrypt operations and scrypt operations seperately.

Following are the time in milliseconds for non-scrypt operations. It should be noted
here that all three browsers perform quite well on these operations. Although, Safari
seems a little slower, this difference is still rather negligible. This however does not
hold true for the scrypt operations, as we will discuss further on.

Figure 4: Library Performance

Scrypt

Scrypt accepts six parameters: passphrase, salt, CPU/memory cost, Block size pa-
rameter, parallelization parameter and output length. The suggested protocol as-
sumes a fixed parallelization parameter of ’1’ and output length of ’64’. For any given
passphrase, salt, parallelization parameter and output length, the time taken to com-
pute the output key varies largely based on CPU/memory cost and block size parameter
chosen. Hence, we tested for a range of CPU/memory cost and block size parameter.
CPU/memory cost was tested for N = 1024, 2048, 4096, 8192, 16384, 32768, 65536 and
131072 and block size r = 4, 8, 16 and 32. It was observed that Firefox and Safari ran
out of memory and failed to complete computation when N=131072 and block size =
32. When tested on Google Chrome, Scrypt ran for the longest time compared to all
other browsers.

Following are the time in milliseconds when Scrypt was tested on Google Chrome
and averaged over 10 iterations. Notice how the computation time exponentially in-
creases with increase in CPU/memory cost and block size.
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Figure 5: Scrypt performance on Google Chrome.

Following are the time in milliseconds when Scrypt was tested on Mozilla Firefox
and averaged over 10 iterations. During the tests, Firefox prompted ”Out of memory”
when CPU Cost was 131072 and Block size was 32.

Figure 6: Scrypt performance on Mozilla Firefox.

Following are the time in milliseconds when Scrypt was tested on Safari and av-
eraged over 10 iterations. Just like in Firefox, Safari was not able to complete its
computation when CPU Cost was 131072 and Block size was 32.

Figure 7: Scrypt performance on Safari.

18



Following are the time in milliseconds when Scrypt was tested in a C implementa-
tion and averaged over 10 iterations. It is evident from the results below that the C
implementation is considerably faster thereby making it extremely important to choose
parameters appropriately.

Figure 8: Scrypt performance for C implementation.

To get a clear idea about how much time each browser and C takes to finish com-
putation, we have plotted the following graphs for each of the four block sizes. It is
evident that scrypt takes the longest time to finish computation on chrome and fastest
on C (among browsers Firefox was the fastest).

Figure 9: BlockSize 4
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Figure 10: BlockSize 8

Figure 11: BlockSize 16
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Figure 12: BlockSize 32

Performance test results

The performance tests of the implementation of the proposed protocol can be used
as evidence to show that the implementation is efficient except for Scrypt operations
which, being a memory hard problem, makes it extremely hard and discourages brute
forcing of passwords. The test environment was chosen with specifications which made
it an average computer thereby providing baseline performance metrics for the imple-
mentation.

Overall, the implementation is extremely efficient but the choice of CPU/memory
cost and block size will determine practicality and security against brute force attacks.
The choice of parameters depends heavily on the developer. As choosing very high
CPU/memory cost and block size would mean high amounts of wait time for clients
to register/login thereby making it not practical and a poor user experience. But on
the otherhand, in the interest of usuability developers should not choose low values for
CPU/memory cost and block size as that will severly compromise the security against
offline dictionary attacks. Keeping these two cases in mind, we set the default CPU
cost to N = 16384 and the block size parameter to r = 16.

7 Conclusion

In this paper, we have proposed a novel authentication protocol that prevents of-
fline dictionary attacks through the combined use of a non-interactive Zero Knowledge
Password Proof and a sequentially memory hard one-way function. Our protocol im-
plements Schnorr’s Zero Knowledge Password Proof combined with the Fiat-Shamir
Heuristic for the Proof of Knowledge and scrypt for the sequentially memory hard
function. We have proven the correctness, soundness and security of our protocol and
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have proven our protocol hard against eavesdroppers, server compromise as well as
client compromise. We have also proven our protocol to be efficient.

We have also implemented our protocol in the form of a simple and lightweight
library that includes a client side written in JavaScript and a server side written in
Java. Our library is easy-to-use for developers and can be used in web deployments
with little effort. To show this, we have created a example web application that uses
our library to implement our authentication system.

Our performance test results show that our implementation is extremely efficient
in terms of time and memory on several platforms. We observe scrypt to be the only
time and memory consuming factor in our implementation as intended.

8 Future work

Features such as an inbuilt strong password policy check, two-factor authentication
and session management can be introduced into our implementation at a later point
to make it easier for developers to quickly create and deploy secure authentication
systems. The library implementation can also be ported to other popular languages
such as C, Swift or Python to make it available to a broader set of developers and users.
Migration from legacy authentication systems to our system can also be improved upon
to make it even easier to make the move. The performance of our system could possibly
be further optimized in later versions with the appropriate parameters in place.
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